Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem9 Structured version   Visualization version   GIF version

Theorem dfon2lem9 31450
Description: Lemma for dfon2 31451. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.)
Assertion
Ref Expression
dfon2lem9 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem dfon2lem9
Dummy variables 𝑧 𝑤 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3651 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)))
2 dfon2lem8 31449 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) ∧ 𝑧𝑧))
32simprd 479 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → 𝑧𝑧)
4 intss1 4464 . . . . . . . . 9 (𝑡𝑧 𝑧𝑡)
52simpld 475 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧))
6 intex 4790 . . . . . . . . . . 11 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
7 dfon2lem3 31444 . . . . . . . . . . . . . . . . 17 ( 𝑧 ∈ V → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥)))
87imp 445 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥))
98simprd 479 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ∀𝑥 𝑧 ¬ 𝑥𝑥)
10 untelirr 31346 . . . . . . . . . . . . . . 15 (∀𝑥 𝑧 ¬ 𝑥𝑥 → ¬ 𝑧 𝑧)
119, 10syl 17 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ¬ 𝑧 𝑧)
12 eleq1 2686 . . . . . . . . . . . . . . 15 ( 𝑧 = 𝑡 → ( 𝑧 𝑧𝑡 𝑧))
1312notbid 308 . . . . . . . . . . . . . 14 ( 𝑧 = 𝑡 → (¬ 𝑧 𝑧 ↔ ¬ 𝑡 𝑧))
1411, 13syl5ibcom 235 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
1514a1dd 50 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
168simpld 475 . . . . . . . . . . . . . . . . 17 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → Tr 𝑧)
17 trss 4731 . . . . . . . . . . . . . . . . 17 (Tr 𝑧 → (𝑡 𝑧𝑡 𝑧))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧𝑡 𝑧))
19 eqss 3603 . . . . . . . . . . . . . . . . 17 ( 𝑧 = 𝑡 ↔ ( 𝑧𝑡𝑡 𝑧))
2019simplbi2com 656 . . . . . . . . . . . . . . . 16 (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡))
2118, 20syl6 35 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡)))
2221com23 86 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (𝑡 𝑧 𝑧 = 𝑡)))
23 con3 149 . . . . . . . . . . . . . 14 ((𝑡 𝑧 𝑧 = 𝑡) → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
2422, 23syl6 35 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧)))
2524com23 86 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (¬ 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
2615, 25pm2.61d 170 . . . . . . . . . . 11 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
276, 26sylanb 489 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
285, 27syldan 487 . . . . . . . . 9 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
294, 28syl5 34 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝑧 → ¬ 𝑡 𝑧))
3029ralrimiv 2961 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑡𝑧 ¬ 𝑡 𝑧)
31 eleq2 2687 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑡𝑤𝑡 𝑧))
3231notbid 308 . . . . . . . . 9 (𝑤 = 𝑧 → (¬ 𝑡𝑤 ↔ ¬ 𝑡 𝑧))
3332ralbidv 2982 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑡𝑧 ¬ 𝑡𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡 𝑧))
3433rspcev 3299 . . . . . . 7 (( 𝑧𝑧 ∧ ∀𝑡𝑧 ¬ 𝑡 𝑧) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
353, 30, 34syl2anc 692 . . . . . 6 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
3635expcom 451 . . . . 5 (∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
371, 36syl6com 37 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧𝐴 → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)))
3837impd 447 . . 3 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
3938alrimiv 1852 . 2 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
40 df-fr 5043 . . 3 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤))
41 epel 4998 . . . . . . . 8 (𝑡 E 𝑤𝑡𝑤)
4241notbii 310 . . . . . . 7 𝑡 E 𝑤 ↔ ¬ 𝑡𝑤)
4342ralbii 2976 . . . . . 6 (∀𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡𝑤)
4443rexbii 3036 . . . . 5 (∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
4544imbi2i 326 . . . 4 (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4645albii 1744 . . 3 (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4740, 46bitri 264 . 2 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4839, 47sylibr 224 1 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  Vcvv 3190  wss 3560  wpss 3561  c0 3897   cint 4447   class class class wbr 4623  Tr wtr 4722   E cep 4993   Fr wfr 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-tr 4723  df-eprel 4995  df-fr 5043  df-suc 5698
This theorem is referenced by:  dfon2  31451
  Copyright terms: Public domain W3C validator