Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfop Structured version   Visualization version   GIF version

Theorem dfop 4376
 Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
dfop.1 𝐴 ∈ V
dfop.2 𝐵 ∈ V
Assertion
Ref Expression
dfop 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2 𝐴 ∈ V
2 dfop.2 . 2 𝐵 ∈ V
3 dfopg 4375 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3mp2an 707 1 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480   ∈ wcel 1987  Vcvv 3190  {csn 4155  {cpr 4157  ⟨cop 4161 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3192  df-dif 3563  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-op 4162 This theorem is referenced by:  opid  4396  elopOLD  4907  opi1  4908  opi2  4909  op1stb  4911  opeqsn  4937  opeqpr  4938  propssopi  4941  uniop  4947  xpsspw  5204  relop  5242  funopg  5890
 Copyright terms: Public domain W3C validator