MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopif Structured version   Visualization version   GIF version

Theorem dfopif 4792
Description: Rewrite df-op 4564 using if. When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Assertion
Ref Expression
dfopif 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)

Proof of Theorem dfopif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-op 4564 . 2 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
2 df-3an 1081 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
32abbii 2883 . 2 {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
4 iftrue 4469 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = {{𝐴}, {𝐴, 𝐵}})
5 ibar 529 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})))
65abbi2dv 2947 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} = {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
74, 6eqtr2d 2854 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅))
8 pm2.21 123 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑥 ∈ ∅))
98adantrd 492 . . . . . 6 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → 𝑥 ∈ ∅))
109abssdv 4042 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ⊆ ∅)
11 ss0 4349 . . . . 5 ({𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ⊆ ∅ → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅)
1210, 11syl 17 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = ∅)
13 iffalse 4472 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = ∅)
1412, 13eqtr4d 2856 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅))
157, 14pm2.61i 183 . 2 {𝑥 ∣ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
161, 3, 153eqtri 2845 1 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  Vcvv 3492  wss 3933  c0 4288  ifcif 4463  {csn 4557  {cpr 4559  cop 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-dif 3936  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-op 4564
This theorem is referenced by:  dfopg  4793  opeq1  4795  opeq2  4796  nfop  4811  csbopg  4813  opprc  4818  opex  5347
  Copyright terms: Public domain W3C validator