Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfphi2 Structured version   Visualization version   GIF version

Theorem dfphi2 15701
 Description: Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 11978 . 2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 phi1 15700 . . . . 5 (ϕ‘1) = 1
3 0z 11600 . . . . . 6 0 ∈ ℤ
4 hashsng 13371 . . . . . 6 (0 ∈ ℤ → (♯‘{0}) = 1)
53, 4ax-mp 5 . . . . 5 (♯‘{0}) = 1
6 rabid2 3257 . . . . . . 7 ({0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1} ↔ ∀𝑥 ∈ {0} (𝑥 gcd 1) = 1)
7 elsni 4338 . . . . . . . . 9 (𝑥 ∈ {0} → 𝑥 = 0)
87oveq1d 6829 . . . . . . . 8 (𝑥 ∈ {0} → (𝑥 gcd 1) = (0 gcd 1))
9 gcd1 15471 . . . . . . . . 9 (0 ∈ ℤ → (0 gcd 1) = 1)
103, 9ax-mp 5 . . . . . . . 8 (0 gcd 1) = 1
118, 10syl6eq 2810 . . . . . . 7 (𝑥 ∈ {0} → (𝑥 gcd 1) = 1)
126, 11mprgbir 3065 . . . . . 6 {0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}
1312fveq2i 6356 . . . . 5 (♯‘{0}) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
142, 5, 133eqtr2i 2788 . . . 4 (ϕ‘1) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
15 fveq2 6353 . . . 4 (𝑁 = 1 → (ϕ‘𝑁) = (ϕ‘1))
16 oveq2 6822 . . . . . . 7 (𝑁 = 1 → (0..^𝑁) = (0..^1))
17 fzo01 12764 . . . . . . 7 (0..^1) = {0}
1816, 17syl6eq 2810 . . . . . 6 (𝑁 = 1 → (0..^𝑁) = {0})
19 oveq2 6822 . . . . . . 7 (𝑁 = 1 → (𝑥 gcd 𝑁) = (𝑥 gcd 1))
2019eqeq1d 2762 . . . . . 6 (𝑁 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (𝑥 gcd 1) = 1))
2118, 20rabeqbidv 3335 . . . . 5 (𝑁 = 1 → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
2221fveq2d 6357 . . . 4 (𝑁 = 1 → (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (♯‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}))
2314, 15, 223eqtr4a 2820 . . 3 (𝑁 = 1 → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
24 eluz2nn 11939 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
25 phival 15694 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2624, 25syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
27 fzossfz 12702 . . . . . . . . . . 11 (1..^𝑁) ⊆ (1...𝑁)
2827a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) ⊆ (1...𝑁))
29 sseqin2 3960 . . . . . . . . . 10 ((1..^𝑁) ⊆ (1...𝑁) ↔ ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3028, 29sylib 208 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
31 fzo0ss1 12712 . . . . . . . . . 10 (1..^𝑁) ⊆ (0..^𝑁)
32 sseqin2 3960 . . . . . . . . . 10 ((1..^𝑁) ⊆ (0..^𝑁) ↔ ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3331, 32mpbi 220 . . . . . . . . 9 ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁)
3430, 33syl6eqr 2812 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = ((0..^𝑁) ∩ (1..^𝑁)))
3534rabeqdv 3334 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1})
36 inrab2 4043 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
37 inrab2 4043 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
3835, 36, 373eqtr4g 2819 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)))
39 phibndlem 15697 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
40 eluzelz 11909 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
41 fzoval 12685 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
4240, 41syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) = (1...(𝑁 − 1)))
4339, 42sseqtr4d 3783 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
44 df-ss 3729 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
4543, 44sylib 208 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
46 gcd0id 15462 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
4740, 46syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = (abs‘𝑁))
48 eluzelre 11910 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
49 eluzge2nn0 11940 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
5049nn0ge0d 11566 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 0 ≤ 𝑁)
5148, 50absidd 14380 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
5247, 51eqtrd 2794 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = 𝑁)
53 eluz2b3 11975 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
5453simprbi 483 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
5552, 54eqnetrd 2999 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) ≠ 1)
5655adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (0 gcd 𝑁) ≠ 1)
577oveq1d 6829 . . . . . . . . . . . . . 14 (𝑥 ∈ {0} → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5857, 17eleq2s 2857 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5958neeq1d 2991 . . . . . . . . . . . 12 (𝑥 ∈ (0..^1) → ((𝑥 gcd 𝑁) ≠ 1 ↔ (0 gcd 𝑁) ≠ 1))
6056, 59syl5ibrcom 237 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) ≠ 1))
6160necon2bd 2948 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → ¬ 𝑥 ∈ (0..^1)))
62 simpr 479 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
63 1z 11619 . . . . . . . . . . . 12 1 ∈ ℤ
64 fzospliti 12714 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^𝑁) ∧ 1 ∈ ℤ) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6562, 63, 64sylancl 697 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6665ord 391 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (¬ 𝑥 ∈ (0..^1) → 𝑥 ∈ (1..^𝑁)))
6761, 66syld 47 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
6867ralrimiva 3104 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
69 rabss 3820 . . . . . . . 8 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
7068, 69sylibr 224 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
71 df-ss 3729 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7270, 71sylib 208 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7338, 45, 723eqtr3d 2802 . . . . 5 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7473fveq2d 6357 . . . 4 (𝑁 ∈ (ℤ‘2) → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7526, 74eqtrd 2794 . . 3 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7623, 75jaoi 393 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
771, 76sylbi 207 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  {crab 3054   ∩ cin 3714   ⊆ wss 3715  {csn 4321  ‘cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   − cmin 10478  ℕcn 11232  2c2 11282  ℤcz 11589  ℤ≥cuz 11899  ...cfz 12539  ..^cfzo 12679  ♯chash 13331  abscabs 14193   gcd cgcd 15438  ϕcphi 15691 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-gcd 15439  df-phi 15693 This theorem is referenced by:  phimullem  15706  eulerth  15710  hashgcdeq  15716  odngen  18212  znunithash  20135
 Copyright terms: Public domain W3C validator