MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfphi2 Structured version   Visualization version   GIF version

Theorem dfphi2 15403
Description: Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 11709 . 2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 phi1 15402 . . . . 5 (ϕ‘1) = 1
3 0z 11332 . . . . . 6 0 ∈ ℤ
4 hashsng 13099 . . . . . 6 (0 ∈ ℤ → (#‘{0}) = 1)
53, 4ax-mp 5 . . . . 5 (#‘{0}) = 1
6 rabid2 3107 . . . . . . 7 ({0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1} ↔ ∀𝑥 ∈ {0} (𝑥 gcd 1) = 1)
7 elsni 4165 . . . . . . . . 9 (𝑥 ∈ {0} → 𝑥 = 0)
87oveq1d 6619 . . . . . . . 8 (𝑥 ∈ {0} → (𝑥 gcd 1) = (0 gcd 1))
9 gcd1 15173 . . . . . . . . 9 (0 ∈ ℤ → (0 gcd 1) = 1)
103, 9ax-mp 5 . . . . . . . 8 (0 gcd 1) = 1
118, 10syl6eq 2671 . . . . . . 7 (𝑥 ∈ {0} → (𝑥 gcd 1) = 1)
126, 11mprgbir 2922 . . . . . 6 {0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}
1312fveq2i 6151 . . . . 5 (#‘{0}) = (#‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
142, 5, 133eqtr2i 2649 . . . 4 (ϕ‘1) = (#‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
15 fveq2 6148 . . . 4 (𝑁 = 1 → (ϕ‘𝑁) = (ϕ‘1))
16 oveq2 6612 . . . . . . 7 (𝑁 = 1 → (0..^𝑁) = (0..^1))
17 fzo01 12491 . . . . . . 7 (0..^1) = {0}
1816, 17syl6eq 2671 . . . . . 6 (𝑁 = 1 → (0..^𝑁) = {0})
19 oveq2 6612 . . . . . . 7 (𝑁 = 1 → (𝑥 gcd 𝑁) = (𝑥 gcd 1))
2019eqeq1d 2623 . . . . . 6 (𝑁 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (𝑥 gcd 1) = 1))
2118, 20rabeqbidv 3181 . . . . 5 (𝑁 = 1 → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
2221fveq2d 6152 . . . 4 (𝑁 = 1 → (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (#‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}))
2314, 15, 223eqtr4a 2681 . . 3 (𝑁 = 1 → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
24 eluz2nn 11670 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
25 phival 15396 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2624, 25syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
27 fzossfz 12429 . . . . . . . . . . 11 (1..^𝑁) ⊆ (1...𝑁)
2827a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) ⊆ (1...𝑁))
29 sseqin2 3795 . . . . . . . . . 10 ((1..^𝑁) ⊆ (1...𝑁) ↔ ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3028, 29sylib 208 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
31 fzo0ss1 12439 . . . . . . . . . 10 (1..^𝑁) ⊆ (0..^𝑁)
32 sseqin2 3795 . . . . . . . . . 10 ((1..^𝑁) ⊆ (0..^𝑁) ↔ ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3331, 32mpbi 220 . . . . . . . . 9 ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁)
3430, 33syl6eqr 2673 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = ((0..^𝑁) ∩ (1..^𝑁)))
3534rabeqdv 3180 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1})
36 inrab2 3876 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
37 inrab2 3876 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
3835, 36, 373eqtr4g 2680 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)))
39 phibndlem 15399 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
40 eluzelz 11641 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
41 fzoval 12412 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
4240, 41syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) = (1...(𝑁 − 1)))
4339, 42sseqtr4d 3621 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
44 df-ss 3569 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
4543, 44sylib 208 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
46 gcd0id 15164 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
4740, 46syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = (abs‘𝑁))
48 eluzelre 11642 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
49 eluzge2nn0 11671 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
5049nn0ge0d 11298 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 0 ≤ 𝑁)
5148, 50absidd 14095 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
5247, 51eqtrd 2655 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = 𝑁)
53 eluz2b3 11706 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
5453simprbi 480 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
5552, 54eqnetrd 2857 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) ≠ 1)
5655adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (0 gcd 𝑁) ≠ 1)
577oveq1d 6619 . . . . . . . . . . . . . 14 (𝑥 ∈ {0} → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5857, 17eleq2s 2716 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5958neeq1d 2849 . . . . . . . . . . . 12 (𝑥 ∈ (0..^1) → ((𝑥 gcd 𝑁) ≠ 1 ↔ (0 gcd 𝑁) ≠ 1))
6056, 59syl5ibrcom 237 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) ≠ 1))
6160necon2bd 2806 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → ¬ 𝑥 ∈ (0..^1)))
62 simpr 477 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
63 1z 11351 . . . . . . . . . . . 12 1 ∈ ℤ
64 fzospliti 12441 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^𝑁) ∧ 1 ∈ ℤ) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6562, 63, 64sylancl 693 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6665ord 392 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (¬ 𝑥 ∈ (0..^1) → 𝑥 ∈ (1..^𝑁)))
6761, 66syld 47 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
6867ralrimiva 2960 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
69 rabss 3658 . . . . . . . 8 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
7068, 69sylibr 224 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
71 df-ss 3569 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7270, 71sylib 208 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7338, 45, 723eqtr3d 2663 . . . . 5 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7473fveq2d 6152 . . . 4 (𝑁 ∈ (ℤ‘2) → (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7526, 74eqtrd 2655 . . 3 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7623, 75jaoi 394 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
771, 76sylbi 207 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911  cin 3554  wss 3555  {csn 4148  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881  cmin 10210  cn 10964  2c2 11014  cz 11321  cuz 11631  ...cfz 12268  ..^cfzo 12406  #chash 13057  abscabs 13908   gcd cgcd 15140  ϕcphi 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-phi 15395
This theorem is referenced by:  phimullem  15408  eulerth  15412  hashgcdeq  15418  odngen  17913  znunithash  19832
  Copyright terms: Public domain W3C validator