Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrcl2 Structured version   Visualization version   GIF version

Theorem dfrcl2 38283
Description: Reflexive closure of a relation as union with restricted identity relation. (Contributed by RP, 6-Jun-2020.)
Assertion
Ref Expression
dfrcl2 r* = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))

Proof of Theorem dfrcl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rcl 38282 . 2 r* = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
2 rabab 3254 . . . . . . . 8 {𝑧 ∈ V ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}
32eqcomi 2660 . . . . . . 7 {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∈ V ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}
43inteqi 4511 . . . . . 6 {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∈ V ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}
54a1i 11 . . . . 5 (𝑥 ∈ V → {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∈ V ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
6 vex 3234 . . . . . . . . . . 11 𝑥 ∈ V
76dmex 7141 . . . . . . . . . 10 dom 𝑥 ∈ V
86rnex 7142 . . . . . . . . . 10 ran 𝑥 ∈ V
97, 8unex 6998 . . . . . . . . 9 (dom 𝑥 ∪ ran 𝑥) ∈ V
10 resiexg 7144 . . . . . . . . 9 ((dom 𝑥 ∪ ran 𝑥) ∈ V → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V)
119, 10ax-mp 5 . . . . . . . 8 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∈ V
1211, 6unex 6998 . . . . . . 7 (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∈ V
1312a1i 11 . . . . . 6 (𝑥 ∈ V → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∈ V)
14 ssun2 3810 . . . . . . 7 𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)
15 dmun 5363 . . . . . . . . . . . 12 dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) = (dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ dom 𝑥)
16 dmresi 5492 . . . . . . . . . . . . 13 dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
1716uneq1i 3796 . . . . . . . . . . . 12 (dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ dom 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∪ dom 𝑥)
18 un23 3805 . . . . . . . . . . . . 13 ((dom 𝑥 ∪ ran 𝑥) ∪ dom 𝑥) = ((dom 𝑥 ∪ dom 𝑥) ∪ ran 𝑥)
19 unidm 3789 . . . . . . . . . . . . . 14 (dom 𝑥 ∪ dom 𝑥) = dom 𝑥
2019uneq1i 3796 . . . . . . . . . . . . 13 ((dom 𝑥 ∪ dom 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥)
2118, 20eqtri 2673 . . . . . . . . . . . 12 ((dom 𝑥 ∪ ran 𝑥) ∪ dom 𝑥) = (dom 𝑥 ∪ ran 𝑥)
2215, 17, 213eqtri 2677 . . . . . . . . . . 11 dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) = (dom 𝑥 ∪ ran 𝑥)
23 rnun 5576 . . . . . . . . . . . 12 ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) = (ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ ran 𝑥)
24 rnresi 5514 . . . . . . . . . . . . 13 ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
2524uneq1i 3796 . . . . . . . . . . . 12 (ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∪ ran 𝑥)
26 unass 3803 . . . . . . . . . . . . 13 ((dom 𝑥 ∪ ran 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ (ran 𝑥 ∪ ran 𝑥))
27 unidm 3789 . . . . . . . . . . . . . 14 (ran 𝑥 ∪ ran 𝑥) = ran 𝑥
2827uneq2i 3797 . . . . . . . . . . . . 13 (dom 𝑥 ∪ (ran 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
2926, 28eqtri 2673 . . . . . . . . . . . 12 ((dom 𝑥 ∪ ran 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥)
3023, 25, 293eqtri 2677 . . . . . . . . . . 11 ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) = (dom 𝑥 ∪ ran 𝑥)
3122, 30uneq12i 3798 . . . . . . . . . 10 (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) = ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥))
32 unidm 3789 . . . . . . . . . 10 ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3331, 32eqtri 2673 . . . . . . . . 9 (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) = (dom 𝑥 ∪ ran 𝑥)
3433reseq2i 5425 . . . . . . . 8 ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
35 ssun1 3809 . . . . . . . 8 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)
3634, 35eqsstri 3668 . . . . . . 7 ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)
3714, 36pm3.2i 470 . . . . . 6 (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
38 dmeq 5356 . . . . . . . . . . 11 (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → dom 𝑧 = dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
39 rneq 5383 . . . . . . . . . . 11 (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ran 𝑧 = ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
4038, 39uneq12d 3801 . . . . . . . . . 10 (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → (dom 𝑧 ∪ ran 𝑧) = (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)))
4140reseq2d 5428 . . . . . . . . 9 (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ( I ↾ (dom 𝑧 ∪ ran 𝑧)) = ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))))
42 id 22 . . . . . . . . 9 (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → 𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
4341, 42sseq12d 3667 . . . . . . . 8 (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧 ↔ ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)))
4443cleq2lem 38231 . . . . . . 7 (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) ↔ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))))
4544intminss 4535 . . . . . 6 (((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∈ V ∧ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) → {𝑧 ∈ V ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
4613, 37, 45sylancl 695 . . . . 5 (𝑥 ∈ V → {𝑧 ∈ V ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
475, 46eqsstrd 3672 . . . 4 (𝑥 ∈ V → {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
48 dmss 5355 . . . . . . . . . . . . . . . 16 (𝑥𝑧 → dom 𝑥 ⊆ dom 𝑧)
49 rnss 5386 . . . . . . . . . . . . . . . 16 (𝑥𝑧 → ran 𝑥 ⊆ ran 𝑧)
50 unss12 3818 . . . . . . . . . . . . . . . 16 ((dom 𝑥 ⊆ dom 𝑧 ∧ ran 𝑥 ⊆ ran 𝑧) → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧))
5148, 49, 50syl2anc 694 . . . . . . . . . . . . . . 15 (𝑥𝑧 → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧))
52 dfss 3622 . . . . . . . . . . . . . . 15 ((dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧) ↔ (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧)))
5351, 52sylib 208 . . . . . . . . . . . . . 14 (𝑥𝑧 → (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧)))
54 incom 3838 . . . . . . . . . . . . . 14 ((dom 𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧)) = ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥))
5553, 54syl6eq 2701 . . . . . . . . . . . . 13 (𝑥𝑧 → (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥)))
5655reseq2d 5428 . . . . . . . . . . . 12 (𝑥𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥))))
57 resres 5444 . . . . . . . . . . . 12 (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥)))
5856, 57syl6eqr 2703 . . . . . . . . . . 11 (𝑥𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)))
59 resss 5457 . . . . . . . . . . . 12 (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧))
6059a1i 11 . . . . . . . . . . 11 (𝑥𝑧 → (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧)))
6158, 60eqsstrd 3672 . . . . . . . . . 10 (𝑥𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧)))
6261adantr 480 . . . . . . . . 9 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧)))
63 simpr 476 . . . . . . . . 9 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)
6462, 63sstrd 3646 . . . . . . . 8 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧)
65 simpl 472 . . . . . . . 8 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → 𝑥𝑧)
6664, 65unssd 3822 . . . . . . 7 ((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧)
6766ax-gen 1762 . . . . . 6 𝑧((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧)
6867a1i 11 . . . . 5 (𝑥 ∈ V → ∀𝑧((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧))
69 ssintab 4526 . . . . 5 ((( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ↔ ∀𝑧((𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧))
7068, 69sylibr 224 . . . 4 (𝑥 ∈ V → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
7147, 70eqssd 3653 . . 3 (𝑥 ∈ V → {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
7271mpteq2ia 4773 . 2 (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
731, 72eqtri 2673 1 r* = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1521   = wceq 1523  wcel 2030  {cab 2637  {crab 2945  Vcvv 3231  cun 3605  cin 3606  wss 3607   cint 4507  cmpt 4762   I cid 5052  dom cdm 5143  ran crn 5144  cres 5145  r*crcl 38281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-rcl 38282
This theorem is referenced by:  dfrcl3  38284
  Copyright terms: Public domain W3C validator