Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrcl4 Structured version   Visualization version   GIF version

Theorem dfrcl4 36787
Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.)
Assertion
Ref Expression
dfrcl4 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dfrcl4
StepHypRef Expression
1 dfrcl3 36786 . 2 r* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (𝑟𝑟1)))
2 df-pr 4124 . . . . 5 {0, 1} = ({0} ∪ {1})
3 iuneq1 4461 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛))
42, 3ax-mp 5 . . . 4 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛)
5 iunxun 4532 . . . 4 𝑛 ∈ ({0} ∪ {1})(𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ {1} (𝑟𝑟𝑛))
6 c0ex 9887 . . . . . 6 0 ∈ V
7 oveq2 6532 . . . . . 6 (𝑛 = 0 → (𝑟𝑟𝑛) = (𝑟𝑟0))
86, 7iunxsn 4530 . . . . 5 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0)
9 1ex 9888 . . . . . 6 1 ∈ V
10 oveq2 6532 . . . . . 6 (𝑛 = 1 → (𝑟𝑟𝑛) = (𝑟𝑟1))
119, 10iunxsn 4530 . . . . 5 𝑛 ∈ {1} (𝑟𝑟𝑛) = (𝑟𝑟1)
128, 11uneq12i 3723 . . . 4 ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ {1} (𝑟𝑟𝑛)) = ((𝑟𝑟0) ∪ (𝑟𝑟1))
134, 5, 123eqtri 2632 . . 3 𝑛 ∈ {0, 1} (𝑟𝑟𝑛) = ((𝑟𝑟0) ∪ (𝑟𝑟1))
1413mpteq2i 4660 . 2 (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (𝑟𝑟1)))
151, 14eqtr4i 2631 1 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  Vcvv 3169  cun 3534  {csn 4121  {cpr 4123   ciun 4446  cmpt 4634  (class class class)co 6524  0cc0 9789  1c1 9790  𝑟crelexp 13551  r*crcl 36783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-n0 11137  df-z 11208  df-uz 11517  df-seq 12616  df-relexp 13552  df-rcl 36784
This theorem is referenced by:  brfvrcld  36802  fvrcllb0d  36804  fvrcllb0da  36805  fvrcllb1d  36806  corclrcl  36818  corcltrcl  36850  cotrclrcl  36853
  Copyright terms: Public domain W3C validator