Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg2 Structured version   Visualization version   GIF version

Theorem dfrdg2 33042
Description: Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg2 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Distinct variable groups:   𝑓,𝐹,𝑥,𝑦   𝑓,𝐼,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem dfrdg2
Dummy variables 𝑔 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgeq2 8050 . . 3 (𝑖 = 𝐼 → rec(𝐹, 𝑖) = rec(𝐹, 𝐼))
2 ifeq1 4473 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
32eqeq2d 2834 . . . . . . . 8 (𝑖 = 𝐼 → ((𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
43ralbidv 3199 . . . . . . 7 (𝑖 = 𝐼 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
54anbi2d 630 . . . . . 6 (𝑖 = 𝐼 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
65rexbidv 3299 . . . . 5 (𝑖 = 𝐼 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
76abbidv 2887 . . . 4 (𝑖 = 𝐼 → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
87unieqd 4854 . . 3 (𝑖 = 𝐼 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
91, 8eqeq12d 2839 . 2 (𝑖 = 𝐼 → (rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} ↔ rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}))
10 df-rdg 8048 . . 3 rec(𝐹, 𝑖) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
11 dfrecs3 8011 . . 3 recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))}
12 vex 3499 . . . . . . . . . . . . 13 𝑓 ∈ V
1312resex 5901 . . . . . . . . . . . 12 (𝑓𝑦) ∈ V
14 eqeq1 2827 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ (𝑓𝑦) = ∅))
15 relres 5884 . . . . . . . . . . . . . . . 16 Rel (𝑓𝑦)
16 reldm0 5800 . . . . . . . . . . . . . . . 16 (Rel (𝑓𝑦) → ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅))
1715, 16ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅)
1814, 17syl6bb 289 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ dom (𝑓𝑦) = ∅))
19 dmeq 5774 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
20 limeq 6205 . . . . . . . . . . . . . . . 16 (dom 𝑔 = dom (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
22 rneq 5808 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → ran 𝑔 = ran (𝑓𝑦))
23 df-ima 5570 . . . . . . . . . . . . . . . . 17 (𝑓𝑦) = ran (𝑓𝑦)
2422, 23syl6eqr 2876 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
2524unieqd 4854 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
26 id 22 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → 𝑔 = (𝑓𝑦))
2719unieqd 4854 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
2826, 27fveq12d 6679 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → (𝑔 dom 𝑔) = ((𝑓𝑦)‘ dom (𝑓𝑦)))
2928fveq2d 6676 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝐹‘(𝑔 dom 𝑔)) = (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))
3021, 25, 29ifbieq12d 4496 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
3118, 30ifbieq2d 4494 . . . . . . . . . . . . 13 (𝑔 = (𝑓𝑦) → if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
32 eqid 2823 . . . . . . . . . . . . 13 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
33 vex 3499 . . . . . . . . . . . . . 14 𝑖 ∈ V
34 imaexg 7622 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ V → (𝑓𝑦) ∈ V)
3512, 34ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑓𝑦) ∈ V
3635uniex 7469 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
37 fvex 6685 . . . . . . . . . . . . . . 15 (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) ∈ V
3836, 37ifex 4517 . . . . . . . . . . . . . 14 if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) ∈ V
3933, 38ifex 4517 . . . . . . . . . . . . 13 if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) ∈ V
4031, 32, 39fvmpt 6770 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
4113, 40ax-mp 5 . . . . . . . . . . 11 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
42 dmres 5877 . . . . . . . . . . . . 13 dom (𝑓𝑦) = (𝑦 ∩ dom 𝑓)
43 onelss 6235 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
4443imp 409 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
45443adant2 1127 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦𝑥)
46 fndm 6457 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
47463ad2ant2 1130 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom 𝑓 = 𝑥)
4845, 47sseqtrrd 4010 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦 ⊆ dom 𝑓)
49 df-ss 3954 . . . . . . . . . . . . . 14 (𝑦 ⊆ dom 𝑓 ↔ (𝑦 ∩ dom 𝑓) = 𝑦)
5048, 49sylib 220 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → (𝑦 ∩ dom 𝑓) = 𝑦)
5142, 50syl5eq 2870 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom (𝑓𝑦) = 𝑦)
52 eqeq1 2827 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → (dom (𝑓𝑦) = ∅ ↔ 𝑦 = ∅))
53 limeq 6205 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (Lim dom (𝑓𝑦) ↔ Lim 𝑦))
54 unieq 4851 . . . . . . . . . . . . . . . . 17 (dom (𝑓𝑦) = 𝑦 dom (𝑓𝑦) = 𝑦)
5554fveq2d 6676 . . . . . . . . . . . . . . . 16 (dom (𝑓𝑦) = 𝑦 → ((𝑓𝑦)‘ dom (𝑓𝑦)) = ((𝑓𝑦)‘ 𝑦))
5655fveq2d 6676 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) = (𝐹‘((𝑓𝑦)‘ 𝑦)))
5753, 56ifbieq2d 4494 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
5852, 57ifbieq2d 4494 . . . . . . . . . . . . 13 (dom (𝑓𝑦) = 𝑦 → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))))
59 onelon 6218 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
60 eloni 6203 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → Ord 𝑦)
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
62613adant2 1127 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → Ord 𝑦)
63 ordzsl 7562 . . . . . . . . . . . . . . 15 (Ord 𝑦 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦))
64 iftrue 4475 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = 𝑖)
65 iftrue 4475 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = 𝑖)
6664, 65eqtr4d 2861 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
67 vex 3499 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
6867sucid 6272 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ suc 𝑧
69 fvres 6691 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ suc 𝑧 → ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧)
71 eloni 6203 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → Ord 𝑧)
72 ordunisuc 7549 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑧 suc 𝑧 = 𝑧)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ On → suc 𝑧 = 𝑧)
7473fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = ((𝑓 ↾ suc 𝑧)‘𝑧))
7573fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → (𝑓 suc 𝑧) = (𝑓𝑧))
7670, 74, 753eqtr4a 2884 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = (𝑓 suc 𝑧))
7776fveq2d 6676 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)) = (𝐹‘(𝑓 suc 𝑧)))
78 nsuceq0 6273 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑧 ≠ ∅
7978neii 3020 . . . . . . . . . . . . . . . . . . . . 21 ¬ suc 𝑧 = ∅
8079iffalsei 4479 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
81 nlimsucg 7559 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ V → ¬ Lim suc 𝑧)
82 iffalse 4478 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
8367, 81, 82mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8480, 83eqtri 2846 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8579iffalsei 4479 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
86 iffalse 4478 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
8767, 81, 86mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
8885, 87eqtri 2846 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
8977, 84, 883eqtr4g 2883 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
90 eqeq1 2827 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
91 limeq 6205 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
92 reseq2 5850 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 → (𝑓𝑦) = (𝑓 ↾ suc 𝑧))
93 unieq 4851 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
9492, 93fveq12d 6679 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → ((𝑓𝑦)‘ 𝑦) = ((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
9594fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘((𝑓𝑦)‘ 𝑦)) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
9691, 95ifbieq2d 4494 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))))
9790, 96ifbieq2d 4494 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))))
9893fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
9998fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
10091, 99ifbieq2d 4494 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
10190, 100ifbieq2d 4494 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
10297, 101eqeq12d 2839 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑧 → (if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))))
10389, 102syl5ibrcom 249 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ On → (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
104103rexlimiv 3282 . . . . . . . . . . . . . . . 16 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
105 iftrue 4475 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = (𝑓𝑦))
106 df-lim 6198 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
107106simp2bi 1142 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑦𝑦 ≠ ∅)
108107neneqd 3023 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑦 → ¬ 𝑦 = ∅)
109108iffalsed 4480 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
110 iftrue 4475 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
111105, 109, 1103eqtr4d 2868 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
112108iffalsed 4480 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
113111, 112eqtr4d 2861 . . . . . . . . . . . . . . . 16 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11466, 104, 1133jaoi 1423 . . . . . . . . . . . . . . 15 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11563, 114sylbi 219 . . . . . . . . . . . . . 14 (Ord 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11662, 115syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11758, 116sylan9eqr 2880 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) ∧ dom (𝑓𝑦) = 𝑦) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11851, 117mpdan 685 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11941, 118syl5eq 2870 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
120119eqeq2d 2834 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1211203expa 1114 . . . . . . . 8 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) ∧ 𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
122121ralbidva 3198 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
123122pm5.32da 581 . . . . . 6 (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
124123rexbiia 3248 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
125124abbii 2888 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
126125unieqi 4853 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
12710, 11, 1263eqtri 2850 . 2 rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
1289, 127vtoclg 3569 1 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  c0 4293  ifcif 4469   cuni 4840  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  Rel wrel 5562  Ord word 6192  Oncon0 6193  Lim wlim 6194  suc csuc 6195   Fn wfn 6352  cfv 6357  recscrecs 8009  reccrdg 8047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-wrecs 7949  df-recs 8010  df-rdg 8048
This theorem is referenced by:  dfrdg3  33043
  Copyright terms: Public domain W3C validator