Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg4 Structured version   Visualization version   GIF version

Theorem dfrdg4 33407
Description: A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfrdg4 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))

Proof of Theorem dfrdg4
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrdg3 33036 . 2 rec(𝐹, 𝐴) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2 an12 643 . . . . . . . 8 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
3 df-fn 6353 . . . . . . . . . 10 (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥))
4 ancom 463 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 = 𝑥) ↔ (dom 𝑓 = 𝑥 ∧ Fun 𝑓))
5 eqcom 2828 . . . . . . . . . . 11 (dom 𝑓 = 𝑥𝑥 = dom 𝑓)
65anbi1i 625 . . . . . . . . . 10 ((dom 𝑓 = 𝑥 ∧ Fun 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
73, 4, 63bitri 299 . . . . . . . . 9 (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
87anbi1i 625 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
9 anass 471 . . . . . . . 8 (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
102, 8, 93bitri 299 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1110exbii 1844 . . . . . 6 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
12 vex 3498 . . . . . . . 8 𝑓 ∈ V
1312dmex 7610 . . . . . . 7 dom 𝑓 ∈ V
14 eleq1 2900 . . . . . . . . 9 (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On))
15 raleq 3406 . . . . . . . . 9 (𝑥 = dom 𝑓 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1614, 15anbi12d 632 . . . . . . . 8 (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1716anbi2d 630 . . . . . . 7 (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1813, 17ceqsexv 3542 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1911, 18bitri 277 . . . . 5 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
20 df-rex 3144 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
21 eldif 3946 . . . . . 6 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
22 elin 4169 . . . . . . . 8 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (𝑓 Funs 𝑓 ∈ (Domain “ On)))
2312elfuns 33371 . . . . . . . . 9 (𝑓 Funs ↔ Fun 𝑓)
2412elima 5929 . . . . . . . . . 10 (𝑓 ∈ (Domain “ On) ↔ ∃𝑥 ∈ On 𝑥Domain𝑓)
25 df-rex 3144 . . . . . . . . . 10 (∃𝑥 ∈ On 𝑥Domain𝑓 ↔ ∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓))
26 vex 3498 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2726, 12brcnv 5748 . . . . . . . . . . . . . 14 (𝑥Domain𝑓𝑓Domain𝑥)
2812, 26brdomain 33389 . . . . . . . . . . . . . 14 (𝑓Domain𝑥𝑥 = dom 𝑓)
2927, 28bitri 277 . . . . . . . . . . . . 13 (𝑥Domain𝑓𝑥 = dom 𝑓)
3029anbi1ci 627 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ (𝑥 = dom 𝑓𝑥 ∈ On))
3130exbii 1844 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On))
3213, 14ceqsexv 3542 . . . . . . . . . . 11 (∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On) ↔ dom 𝑓 ∈ On)
3331, 32bitri 277 . . . . . . . . . 10 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ dom 𝑓 ∈ On)
3424, 25, 333bitri 299 . . . . . . . . 9 (𝑓 ∈ (Domain “ On) ↔ dom 𝑓 ∈ On)
3523, 34anbi12i 628 . . . . . . . 8 ((𝑓 Funs 𝑓 ∈ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3622, 35bitri 277 . . . . . . 7 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3736anbi1i 625 . . . . . 6 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
38 brdif 5112 . . . . . . . . . . . . . . 15 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
39 vex 3498 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4012, 39brco 5736 . . . . . . . . . . . . . . . . 17 (𝑓( E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥𝑥 E 𝑦))
4128anbi1i 625 . . . . . . . . . . . . . . . . . . 19 ((𝑓Domain𝑥𝑥 E 𝑦) ↔ (𝑥 = dom 𝑓𝑥 E 𝑦))
4241exbii 1844 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦))
43 breq1 5062 . . . . . . . . . . . . . . . . . . 19 (𝑥 = dom 𝑓 → (𝑥 E 𝑦 ↔ dom 𝑓 E 𝑦))
4413, 43ceqsexv 3542 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4542, 44bitri 277 . . . . . . . . . . . . . . . . 17 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4613, 39brcnv 5748 . . . . . . . . . . . . . . . . . 18 (dom 𝑓 E 𝑦𝑦 E dom 𝑓)
4713epeli 5463 . . . . . . . . . . . . . . . . . 18 (𝑦 E dom 𝑓𝑦 ∈ dom 𝑓)
4846, 47bitri 277 . . . . . . . . . . . . . . . . 17 (dom 𝑓 E 𝑦𝑦 ∈ dom 𝑓)
4940, 45, 483bitri 299 . . . . . . . . . . . . . . . 16 (𝑓( E ∘ Domain)𝑦𝑦 ∈ dom 𝑓)
5049anbi1i 625 . . . . . . . . . . . . . . 15 ((𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
5138, 50bitri 277 . . . . . . . . . . . . . 14 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
52 onelon 6211 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
53523adant1 1126 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
54 brun 5110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥))
55 brxp 5596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}))
56 opelxp 5586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ {∅}))
5712, 56mpbiran 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 ∈ {∅})
58 velsn 4577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
5957, 58bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 = ∅)
60 velsn 4577 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ { {𝐴}} ↔ 𝑥 = {𝐴})
6159, 60anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}) ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
6255, 61bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
63 brun 5110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥))
6426brresi 5857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ∧ ⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥))
65 opelxp 5586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ (𝑓 ∈ V ∧ 𝑦 Limits ))
6612, 65mpbiran 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ 𝑦 Limits )
6739ellimits 33366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 Limits ↔ Lim 𝑦)
6866, 67bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ Lim 𝑦)
69 opex 5349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑓, 𝑦⟩ ∈ V
7069, 26brco 5736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥 ↔ ∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥))
71 vex 3498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑧 ∈ V
7212, 39, 71brimg 33393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩Img𝑧𝑧 = (𝑓𝑦))
7326brbigcup 33354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 Bigcup 𝑥 𝑧 = 𝑥)
7472, 73anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ (𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
7574exbii 1844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ ∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
7612imaex 7615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓𝑦) ∈ V
77 unieq 4840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑦) → 𝑧 = (𝑓𝑦))
7877eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑓𝑦) → ( 𝑧 = 𝑥 (𝑓𝑦) = 𝑥))
7976, 78ceqsexv 3542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ (𝑓𝑦) = 𝑥)
80 eqcom 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑦) = 𝑥𝑥 = (𝑓𝑦))
8179, 80bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ 𝑥 = (𝑓𝑦))
8270, 75, 813bitri 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥𝑥 = (𝑓𝑦))
8368, 82anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ∧ ⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥) ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8464, 83bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8526brresi 5857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥))
86 opelxp 5586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ ran Succ))
8712, 86mpbiran 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ 𝑦 ∈ ran Succ)
8839elrn 5817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ran Succ ↔ ∃𝑧 𝑧Succ𝑦)
8971, 39brsuccf 33397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧Succ𝑦𝑦 = suc 𝑧)
9089exbii 1844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 𝑧Succ𝑦 ↔ ∃𝑧 𝑦 = suc 𝑧)
9187, 88, 903bitri 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ ∃𝑧 𝑦 = suc 𝑧)
9269, 26brco 5736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥 ↔ ∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥))
93 vex 3498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑎 ∈ V
9469, 93brco 5736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎 ↔ ∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎))
9512, 39, 71brpprod3a 33342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏))
96 3anrot 1096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩))
9793ideq 5718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 I 𝑎𝑓 = 𝑎)
98 equcom 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 = 𝑎𝑎 = 𝑓)
9997, 98bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑓 I 𝑎𝑎 = 𝑓)
100 vex 3498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 𝑏 ∈ V
101100brbigcup 33354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 Bigcup 𝑏 𝑦 = 𝑏)
102 eqcom 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ( 𝑦 = 𝑏𝑏 = 𝑦)
103101, 102bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 Bigcup 𝑏𝑏 = 𝑦)
104 biid 263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
10599, 103, 1043anbi123i 1151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
10696, 105bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
1071062exbii 1845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
108 vuniex 7459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑦 ∈ V
109 opeq1 4797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 = 𝑓 → ⟨𝑎, 𝑏⟩ = ⟨𝑓, 𝑏⟩)
110109eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎 = 𝑓 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑏⟩))
111 opeq2 4798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑏 = 𝑦 → ⟨𝑓, 𝑏⟩ = ⟨𝑓, 𝑦⟩)
112111eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑏 = 𝑦 → (𝑧 = ⟨𝑓, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑦⟩))
11312, 108, 110, 112ceqsex2v 3545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝑓, 𝑦⟩)
11495, 107, 1133bitri 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧 = ⟨𝑓, 𝑦⟩)
115114anbi1i 625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ (𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
116115exbii 1844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ ∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
117 opex 5349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑓, 𝑦⟩ ∈ V
118 breq1 5062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = ⟨𝑓, 𝑦⟩ → (𝑧Apply𝑎 ↔ ⟨𝑓, 𝑦⟩Apply𝑎))
119117, 118ceqsexv 3542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ ⟨𝑓, 𝑦⟩Apply𝑎)
12012, 108, 93brapply 33394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⟨𝑓, 𝑦⟩Apply𝑎𝑎 = (𝑓 𝑦))
121119, 120bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ 𝑎 = (𝑓 𝑦))
12294, 116, 1213bitri 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎 = (𝑓 𝑦))
12393, 26brfullfun 33404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎FullFun𝐹𝑥𝑥 = (𝐹𝑎))
124122, 123anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ (𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
125124exbii 1844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ ∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
126 fvex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 𝑦) ∈ V
127 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 = (𝑓 𝑦) → (𝐹𝑎) = (𝐹‘(𝑓 𝑦)))
128127eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 = (𝑓 𝑦) → (𝑥 = (𝐹𝑎) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
129126, 128ceqsexv 3542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)) ↔ 𝑥 = (𝐹‘(𝑓 𝑦)))
13092, 125, 1293bitri 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥𝑥 = (𝐹‘(𝑓 𝑦)))
13191, 130anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥) ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13285, 131bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13384, 132orbi12i 911 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥) ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13463, 133bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13562, 134orbi12i 911 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥) ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
13654, 135bitri 277 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
137 onzsl 7555 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ On ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)))
138 nlim0 6244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim ∅
139 limeq 6198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → (Lim 𝑦 ↔ Lim ∅))
140138, 139mtbiri 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ Lim 𝑦)
141140intnanrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
142 nsuceq0 6266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 suc 𝑧 ≠ ∅
143 neeq2 3079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = ∅ → (suc 𝑧𝑦 ↔ suc 𝑧 ≠ ∅))
144142, 143mpbiri 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = ∅ → suc 𝑧𝑦)
145144necomd 3071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = ∅ → 𝑦 ≠ suc 𝑧)
146145neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → ¬ 𝑦 = suc 𝑧)
147146nexdv 1933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ ∃𝑧 𝑦 = suc 𝑧)
148147intnanrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
149 ioran 980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) ↔ (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) ∧ ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
150141, 148, 149sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → ¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
151 orel2 887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
153 iftrue 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝐴 ∈ V, 𝐴, ∅))
154 unisnif 33381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)
155153, 154syl6eqr 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = {𝐴})
156155eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = {𝐴}))
157156biimprd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = {𝐴} → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
158157adantld 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
159152, 158syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
160156biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = {𝐴}))
161160anc2li 558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
162 orc 863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
163161, 162syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
164159, 163impbid 214 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
165 neeq1 3078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → (𝑦 ≠ ∅ ↔ suc 𝑧 ≠ ∅))
166142, 165mpbiri 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧𝑦 ≠ ∅)
167166neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ 𝑦 = ∅)
168167intnanrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
169168rexlimivw 3282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
170 orel1 885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
172 nlimsucg 7551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ V → ¬ Lim suc 𝑧)
173172elv 3500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim suc 𝑧
174 limeq 6198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
175173, 174mtbiri 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ Lim 𝑦)
176175rexlimivw 3282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
177176intnanrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
178 orel1 885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
179177, 178syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
180142neii 3018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ¬ suc 𝑧 = ∅
181180iffalsei 4477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
182 iffalse 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
18371, 172, 182mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
184181, 183eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
185 eqeq1 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
186 unieq 4840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
187186fveq2d 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
188187fveq2d 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
189174, 188ifbieq2d 4492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
190185, 189ifbieq2d 4492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
191184, 190, 1883eqtr4a 2882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
192191rexlimivw 3282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
193192eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
194193biimprd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = (𝐹‘(𝑓 𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
195194adantld 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
196171, 179, 1953syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
197 rexex 3240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ∃𝑧 𝑦 = suc 𝑧)
198193biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝐹‘(𝑓 𝑦))))
199 olc 864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
200199olcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
201197, 198, 200syl6an 682 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
202196, 201impbid 214 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
203140con2i 141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ 𝑦 = ∅)
204203intnanrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
205204, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
206175exlimiv 1927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
207206con2i 141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ ∃𝑧 𝑦 = suc 𝑧)
208207intnanrd 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
209 orel2 887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
211203iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
212 iftrue 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
213211, 212eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝑓𝑦))
214213eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝑓𝑦)))
215214biimprd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = (𝑓𝑦) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
216215adantld 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → ((Lim 𝑦𝑥 = (𝑓𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
217205, 210, 2163syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
218217adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
219214biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝑓𝑦)))
220219anc2li 558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
221 orc 863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
222221olcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
223220, 222syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
224223adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
225218, 224impbid 214 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
226164, 202, 2253jaoi 1423 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
227137, 226sylbi 219 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
228136, 227syl5bb 285 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
22953, 228syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
23026, 69brcnv 5748 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ ⟨𝑓, 𝑦⟩Apply𝑥)
23112, 39, 26brapply 33394 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩Apply𝑥𝑥 = (𝑓𝑦))
232230, 231bitri 277 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦))
233232a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦)))
234229, 233anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ∧ 𝑥 = (𝑓𝑦))))
235234biancomd 466 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
236235exbidv 1918 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
237 df-br 5060 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))
23869elfix 33359 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))) ↔ ⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩)
23969, 69brco 5736 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩ ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
240237, 238, 2393bitri 299 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
241 fvex 6678 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑦) ∈ V
242241eqvinc 3642 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
243236, 240, 2423bitr4g 316 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
244243notbid 320 . . . . . . . . . . . . . . . . 17 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
2452443expia 1117 . . . . . . . . . . . . . . . 16 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑦 ∈ dom 𝑓 → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
246245pm5.32d 579 . . . . . . . . . . . . . . 15 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
247 annim 406 . . . . . . . . . . . . . . 15 ((𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
248246, 247syl6bb 289 . . . . . . . . . . . . . 14 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
24951, 248syl5bb 285 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
250249exbidv 1918 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
251 exnal 1823 . . . . . . . . . . . 12 (∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
252250, 251syl6rbb 290 . . . . . . . . . . 11 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦))
25312eldm 5764 . . . . . . . . . . 11 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦)
254252, 253syl6bbr 291 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
255254con1bid 358 . . . . . . . . 9 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
256 df-ral 3143 . . . . . . . . 9 (∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
257255, 256syl6bbr 291 . . . . . . . 8 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
258257pm5.32i 577 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
259 anass 471 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
260258, 259bitri 277 . . . . . 6 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26121, 37, 2603bitri 299 . . . . 5 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26219, 20, 2613bitr4ri 306 . . . 4 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
263262abbi2i 2953 . . 3 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
264263unieqi 4841 . 2 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2651, 264eqtr4i 2847 1 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083  wal 1531   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3495  cdif 3933  cun 3934  cin 3935  c0 4291  ifcif 4467  {csn 4561  cop 4567   cuni 4832   class class class wbr 5059   I cid 5454   E cep 5459   × cxp 5548  ccnv 5549  dom cdm 5550  ran crn 5551  cres 5552  cima 5553  ccom 5554  Oncon0 6186  Lim wlim 6187  suc csuc 6188  Fun wfun 6344   Fn wfn 6345  cfv 6350  reccrdg 8039  pprodcpprod 33287   Bigcup cbigcup 33290   Fix cfix 33291   Limits climits 33292   Funs cfuns 33293  Imgcimg 33298  Domaincdomain 33299  Applycapply 33301  Succcsuccf 33304  FullFuncfullfn 33306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-txp 33310  df-pprod 33311  df-bigcup 33314  df-fix 33315  df-limits 33316  df-funs 33317  df-singleton 33318  df-singles 33319  df-image 33320  df-cart 33321  df-img 33322  df-domain 33323  df-cup 33325  df-succf 33328  df-apply 33329  df-funpart 33330  df-fullfun 33331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator