Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrecs2 Structured version   Visualization version   GIF version

Theorem dfrecs2 31691
Description: A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.)
Assertion
Ref Expression
dfrecs2 recs(𝐹) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))

Proof of Theorem dfrecs2
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrecs3 7415 . 2 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 elin 3779 . . . . . . . . 9 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (𝑓 Funs 𝑓 ∈ (Domain “ On)))
3 vex 3194 . . . . . . . . . . 11 𝑓 ∈ V
43elfuns 31656 . . . . . . . . . 10 (𝑓 Funs ↔ Fun 𝑓)
5 vex 3194 . . . . . . . . . . . . . 14 𝑥 ∈ V
65, 3brcnv 5270 . . . . . . . . . . . . 13 (𝑥Domain𝑓𝑓Domain𝑥)
73, 5brdomain 31674 . . . . . . . . . . . . 13 (𝑓Domain𝑥𝑥 = dom 𝑓)
86, 7bitri 264 . . . . . . . . . . . 12 (𝑥Domain𝑓𝑥 = dom 𝑓)
98rexbii 3039 . . . . . . . . . . 11 (∃𝑥 ∈ On 𝑥Domain𝑓 ↔ ∃𝑥 ∈ On 𝑥 = dom 𝑓)
103elima 5434 . . . . . . . . . . 11 (𝑓 ∈ (Domain “ On) ↔ ∃𝑥 ∈ On 𝑥Domain𝑓)
11 risset 3060 . . . . . . . . . . 11 (dom 𝑓 ∈ On ↔ ∃𝑥 ∈ On 𝑥 = dom 𝑓)
129, 10, 113bitr4i 292 . . . . . . . . . 10 (𝑓 ∈ (Domain “ On) ↔ dom 𝑓 ∈ On)
134, 12anbi12i 732 . . . . . . . . 9 ((𝑓 Funs 𝑓 ∈ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
142, 13bitri 264 . . . . . . . 8 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
153eldm 5286 . . . . . . . . . . 11 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦)
16 brdif 4670 . . . . . . . . . . . . 13 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ (𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦))
17 vex 3194 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
183, 17brco 5257 . . . . . . . . . . . . . . 15 (𝑓( E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥𝑥 E 𝑦))
197anbi1i 730 . . . . . . . . . . . . . . . . 17 ((𝑓Domain𝑥𝑥 E 𝑦) ↔ (𝑥 = dom 𝑓𝑥 E 𝑦))
2019exbii 1772 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦))
213dmex 7047 . . . . . . . . . . . . . . . . 17 dom 𝑓 ∈ V
22 breq1 4621 . . . . . . . . . . . . . . . . 17 (𝑥 = dom 𝑓 → (𝑥 E 𝑦 ↔ dom 𝑓 E 𝑦))
2321, 22ceqsexv 3233 . . . . . . . . . . . . . . . 16 (∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
2420, 23bitri 264 . . . . . . . . . . . . . . 15 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
2521, 17brcnv 5270 . . . . . . . . . . . . . . . 16 (dom 𝑓 E 𝑦𝑦 E dom 𝑓)
2621epelc 4992 . . . . . . . . . . . . . . . 16 (𝑦 E dom 𝑓𝑦 ∈ dom 𝑓)
2725, 26bitri 264 . . . . . . . . . . . . . . 15 (dom 𝑓 E 𝑦𝑦 ∈ dom 𝑓)
2818, 24, 273bitri 286 . . . . . . . . . . . . . 14 (𝑓( E ∘ Domain)𝑦𝑦 ∈ dom 𝑓)
29 df-br 4619 . . . . . . . . . . . . . . . 16 (𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))
30 opex 4898 . . . . . . . . . . . . . . . . 17 𝑓, 𝑦⟩ ∈ V
3130elfix 31644 . . . . . . . . . . . . . . . 16 (⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)) ↔ ⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩)
3230, 30brco 5257 . . . . . . . . . . . . . . . . 17 (⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩ ↔ ∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩))
33 ancom 466 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥Apply⟨𝑓, 𝑦⟩ ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
345, 30brcnv 5270 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ ⟨𝑓, 𝑦⟩Apply𝑥)
353, 17, 5brapply 31679 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑓, 𝑦⟩Apply𝑥𝑥 = (𝑓𝑦))
3634, 35bitri 264 . . . . . . . . . . . . . . . . . . . . 21 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦))
3736anbi1i 730 . . . . . . . . . . . . . . . . . . . 20 ((𝑥Apply⟨𝑓, 𝑦⟩ ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥) ↔ (𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
3833, 37bitri 264 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
3938exbii 1772 . . . . . . . . . . . . . . . . . 18 (∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥))
40 fvex 6160 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑦) ∈ V
41 breq2 4622 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓𝑦) → (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥 ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦)))
4240, 41ceqsexv 3233 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑥 = (𝑓𝑦) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥) ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦))
4339, 42bitri 264 . . . . . . . . . . . . . . . . 17 (∃𝑥(⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦))
4430, 40brco 5257 . . . . . . . . . . . . . . . . . 18 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦) ↔ ∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)))
453, 17, 5brrestrict 31690 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑓, 𝑦⟩Restrict𝑥𝑥 = (𝑓𝑦))
4645anbi1i 730 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)))
4746exbii 1772 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)))
483resex 5406 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑦) ∈ V
49 breq1 4621 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓𝑦) → (𝑥FullFun𝐹(𝑓𝑦) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦)))
5048, 49ceqsexv 3233 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦))
5147, 50bitri 264 . . . . . . . . . . . . . . . . . 18 (∃𝑥(⟨𝑓, 𝑦⟩Restrict𝑥𝑥FullFun𝐹(𝑓𝑦)) ↔ (𝑓𝑦)FullFun𝐹(𝑓𝑦))
5248, 40brfullfun 31689 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑦)FullFun𝐹(𝑓𝑦) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5344, 51, 523bitri 286 . . . . . . . . . . . . . . . . 17 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ Restrict)(𝑓𝑦) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5432, 43, 533bitri 286 . . . . . . . . . . . . . . . 16 (⟨𝑓, 𝑦⟩(Apply ∘ (FullFun𝐹 ∘ Restrict))⟨𝑓, 𝑦⟩ ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5529, 31, 543bitri 286 . . . . . . . . . . . . . . 15 (𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5655notbii 310 . . . . . . . . . . . . . 14 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦 ↔ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)))
5728, 56anbi12i 732 . . . . . . . . . . . . 13 ((𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5816, 57bitri 264 . . . . . . . . . . . 12 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
5958exbii 1772 . . . . . . . . . . 11 (∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))𝑦 ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
6015, 59bitri 264 . . . . . . . . . 10 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
61 df-rex 2918 . . . . . . . . . 10 (∃𝑦 ∈ dom 𝑓 ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∃𝑦(𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
62 rexnal 2994 . . . . . . . . . 10 (∃𝑦 ∈ dom 𝑓 ¬ (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ¬ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))
6360, 61, 623bitr2ri 289 . . . . . . . . 9 (¬ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))
6463con1bii 346 . . . . . . . 8 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))
6514, 64anbi12i 732 . . . . . . 7 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))
66 anass 680 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
6765, 66bitri 264 . . . . . 6 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
68 eleq1 2692 . . . . . . . . 9 (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On))
69 raleq 3132 . . . . . . . . 9 (𝑥 = dom 𝑓 → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))
7068, 69anbi12d 746 . . . . . . . 8 (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
7170anbi2d 739 . . . . . . 7 (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦))))))
7221, 71ceqsexv 3233 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
73 df-fn 5853 . . . . . . . . . 10 (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥))
74 eqcom 2633 . . . . . . . . . . 11 (dom 𝑓 = 𝑥𝑥 = dom 𝑓)
7574anbi2i 729 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 = 𝑥) ↔ (Fun 𝑓𝑥 = dom 𝑓))
76 ancom 466 . . . . . . . . . 10 ((Fun 𝑓𝑥 = dom 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
7773, 75, 763bitri 286 . . . . . . . . 9 (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
7877anbi1i 730 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
79 an12 837 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
80 anass 680 . . . . . . . 8 (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))))
8178, 79, 803bitr3ri 291 . . . . . . 7 ((𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8281exbii 1772 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8367, 72, 823bitr2i 288 . . . . 5 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
84 eldif 3570 . . . . 5 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ (𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))))
85 df-rex 2918 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
8683, 84, 853bitr4i 292 . . . 4 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
8786abbi2i 2741 . . 3 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
8887unieqi 4416 . 2 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict)))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
891, 88eqtr4i 2651 1 recs(𝐹) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (FullFun𝐹 ∘ Restrict))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1480  wex 1701  wcel 1992  {cab 2612  wral 2912  wrex 2913  cdif 3557  cin 3559  cop 4159   cuni 4407   class class class wbr 4618   E cep 4988  ccnv 5078  dom cdm 5079  cres 5081  cima 5082  ccom 5083  Oncon0 5685  Fun wfun 5844   Fn wfn 5845  cfv 5850  recscrecs 7413   Fix cfix 31575   Funs cfuns 31577  Domaincdomain 31583  Applycapply 31585  FullFuncfullfn 31590  Restrictcrestrict 31591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-symdif 3827  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fo 5856  df-fv 5858  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-txp 31594  df-pprod 31595  df-bigcup 31598  df-fix 31599  df-funs 31601  df-singleton 31602  df-singles 31603  df-image 31604  df-cart 31605  df-img 31606  df-domain 31607  df-range 31608  df-cap 31610  df-restrict 31611  df-apply 31613  df-funpart 31614  df-fullfun 31615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator