MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn4 Structured version   Visualization version   GIF version

Theorem dfrn4 5554
Description: Range defined in terms of image. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dfrn4 ran 𝐴 = (𝐴 “ V)

Proof of Theorem dfrn4
StepHypRef Expression
1 df-ima 5087 . 2 (𝐴 “ V) = ran (𝐴 ↾ V)
2 rnresv 5553 . 2 ran (𝐴 ↾ V) = ran 𝐴
31, 2eqtr2i 2644 1 ran 𝐴 = (𝐴 “ V)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  Vcvv 3186  ran crn 5075  cres 5076  cima 5077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087
This theorem is referenced by:  csbrn  5555  dmmpt  5589  gsumpropd2lem  17194  ffsrn  29344
  Copyright terms: Public domain W3C validator