Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl4 Structured version   Visualization version   GIF version

Theorem dfrtrcl4 36843
Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dfrtrcl4 t* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))

Proof of Theorem dfrtrcl4
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrtrcl3 36838 . 2 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
2 df-n0 11143 . . . . . . 7 0 = (ℕ ∪ {0})
32equncomi 3721 . . . . . 6 0 = ({0} ∪ ℕ)
4 iuneq1 4465 . . . . . 6 (ℕ0 = ({0} ∪ ℕ) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛))
53, 4ax-mp 5 . . . . 5 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛)
6 iunxun 4536 . . . . 5 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
75, 6eqtri 2632 . . . 4 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
8 c0ex 9891 . . . . . . 7 0 ∈ V
9 oveq2 6535 . . . . . . 7 (𝑛 = 0 → (𝑟𝑟𝑛) = (𝑟𝑟0))
108, 9iunxsn 4534 . . . . . 6 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0)
1110a1i 11 . . . . 5 (𝑟 ∈ V → 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0))
12 oveq1 6534 . . . . . . . 8 (𝑥 = 𝑟 → (𝑥𝑟𝑛) = (𝑟𝑟𝑛))
1312iuneq2d 4478 . . . . . . 7 (𝑥 = 𝑟 𝑛 ∈ ℕ (𝑥𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
14 dftrcl3 36825 . . . . . . 7 t+ = (𝑥 ∈ V ↦ 𝑛 ∈ ℕ (𝑥𝑟𝑛))
15 nnex 10876 . . . . . . . 8 ℕ ∈ V
16 ovex 6555 . . . . . . . 8 (𝑟𝑟𝑛) ∈ V
1715, 16iunex 7017 . . . . . . 7 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
1813, 14, 17fvmpt 6176 . . . . . 6 (𝑟 ∈ V → (t+‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
1918eqcomd 2616 . . . . 5 (𝑟 ∈ V → 𝑛 ∈ ℕ (𝑟𝑟𝑛) = (t+‘𝑟))
2011, 19uneq12d 3730 . . . 4 (𝑟 ∈ V → ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛)) = ((𝑟𝑟0) ∪ (t+‘𝑟)))
217, 20syl5eq 2656 . . 3 (𝑟 ∈ V → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = ((𝑟𝑟0) ∪ (t+‘𝑟)))
2221mpteq2ia 4663 . 2 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))
231, 22eqtri 2632 1 t* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  {csn 4125   ciun 4450  cmpt 4638  cfv 5790  (class class class)co 6527  0cc0 9793  cn 10870  0cn0 11142  t+ctcl 13521  t*crtcl 13522  𝑟crelexp 13557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-n0 11143  df-z 11214  df-uz 11523  df-seq 12622  df-trcl 13523  df-rtrcl 13524  df-relexp 13558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator