![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrtrclrec2 | Structured version Visualization version GIF version |
Description: If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) |
Ref | Expression |
---|---|
rtrclreclem.1 | ⊢ (𝜑 → Rel 𝑅) |
rtrclreclem.2 | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
dfrtrclrec2 | ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtrclreclem.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | nn0ex 11336 | . . . . 5 ⊢ ℕ0 ∈ V | |
3 | ovex 6718 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
4 | 2, 3 | iunex 7189 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
5 | oveq1 6697 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
6 | 5 | iuneq2d 4579 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
7 | eqid 2651 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
8 | 6, 7 | fvmptg 6319 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
9 | 1, 4, 8 | sylancl 695 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
10 | breq 4687 | . . . 4 ⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ 𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵)) | |
11 | eliun 4556 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛))) |
13 | df-br 4686 | . . . . 5 ⊢ (𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
14 | df-br 4686 | . . . . . 6 ⊢ (𝐴(𝑅↑𝑟𝑛)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) | |
15 | 14 | rexbii 3070 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) |
16 | 12, 13, 15 | 3bitr4g 303 | . . . 4 ⊢ (𝜑 → (𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
17 | 10, 16 | sylan9bb 736 | . . 3 ⊢ ((((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∧ 𝜑) → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
18 | 9, 17 | mpancom 704 | . 2 ⊢ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
19 | df-rtrclrec 13840 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
20 | fveq1 6228 | . . . . . 6 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
21 | 20 | breqd 4696 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝐴(t*rec‘𝑅)𝐵 ↔ 𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵)) |
22 | 21 | bibi1d 332 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵) ↔ (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵))) |
23 | 22 | imbi2d 329 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)))) |
24 | 19, 23 | ax-mp 5 | . 2 ⊢ ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵))) |
25 | 18, 24 | mpbir 221 | 1 ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 〈cop 4216 ∪ ciun 4552 class class class wbr 4685 ↦ cmpt 4762 Rel wrel 5148 ‘cfv 5926 (class class class)co 6690 ℕ0cn0 11330 ↑𝑟crelexp 13804 t*reccrtrcl 13839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rrecex 10046 ax-cnre 10047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-nn 11059 df-n0 11331 df-rtrclrec 13840 |
This theorem is referenced by: rtrclreclem3 13844 rtrclind 13849 |
Copyright terms: Public domain | W3C validator |