MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfse2 Structured version   Visualization version   GIF version

Theorem dfse2 5534
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5103 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
2 dfrab3 3935 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
3 vex 3234 . . . . . . 7 𝑥 ∈ V
4 iniseg 5531 . . . . . . 7 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥})
53, 4ax-mp 5 . . . . . 6 (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥}
65ineq2i 3844 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
72, 6eqtr4i 2676 . . . 4 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ (𝑅 “ {𝑥}))
87eleq1i 2721 . . 3 ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
98ralbii 3009 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
101, 9bitri 264 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wcel 2030  {cab 2637  wral 2941  {crab 2945  Vcvv 3231  cin 3606  {csn 4210   class class class wbr 4685   Se wse 5100  ccnv 5142  cima 5146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-se 5103  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156
This theorem is referenced by:  isoselem  6631  fnse  7339
  Copyright terms: Public domain W3C validator