Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso3 Structured version   Visualization version   GIF version

Theorem dfso3 31310
Description: Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.)
Assertion
Ref Expression
dfso3 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfso3
StepHypRef Expression
1 ne0i 3897 . . . . 5 (𝑦𝐴𝐴 ≠ ∅)
2 r19.27zv 4043 . . . . 5 (𝐴 ≠ ∅ → (∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
31, 2syl 17 . . . 4 (𝑦𝐴 → (∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
43ralbiia 2973 . . 3 (∀𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
54ralbii 2974 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
6 df-3an 1038 . . . 4 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
76ralbii 2974 . . 3 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
872ralbii 2975 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
9 df-po 4995 . . . 4 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109anbi1i 730 . . 3 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
11 df-so 4996 . . 3 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 r19.26-2 3058 . . 3 (∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
1310, 11, 123bitr4i 292 . 2 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
145, 8, 133bitr4ri 293 1 (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035  w3a 1036  wcel 1987  wne 2790  wral 2907  c0 3891   class class class wbr 4613   Po wpo 4993   Or wor 4994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-v 3188  df-dif 3558  df-nul 3892  df-po 4995  df-so 4996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator