Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfssr2 Structured version   Visualization version   GIF version

Theorem dfssr2 35733
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.)
Assertion
Ref Expression
dfssr2 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))

Proof of Theorem dfssr2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5464 . . . . . . 7 (𝑧 E 𝑥𝑧𝑥)
2 brvdif 35516 . . . . . . . 8 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦)
3 epel 5464 . . . . . . . 8 (𝑧 E 𝑦𝑧𝑦)
42, 3xchbinx 336 . . . . . . 7 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧𝑦)
51, 4anbi12i 628 . . . . . 6 ((𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑦))
65exbii 1844 . . . . 5 (∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
76notbii 322 . . . 4 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
8 dfss6 3957 . . . 4 (𝑥𝑦 ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
97, 8bitr4i 280 . . 3 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ 𝑥𝑦)
109opabbii 5126 . 2 {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
11 rnxrn 35640 . . . 4 ran ( E ⋉ (V ∖ E )) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1211difeq2i 4096 . . 3 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)})
13 vvdifopab 35515 . . 3 ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1412, 13eqtri 2844 . 2 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
15 df-ssr 35732 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1610, 14, 153eqtr4ri 2855 1 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1533  wex 1776  wcel 2110  Vcvv 3495  cdif 3933  wss 3936   class class class wbr 5059  {copab 5121   E cep 5459   × cxp 5548  ran crn 5551  cxrn 35446   S cssr 35450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-eprel 5460  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fo 6356  df-fv 6358  df-1st 7683  df-2nd 7684  df-ec 8285  df-xrn 35617  df-ssr 35732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator