MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsup2 Structured version   Visualization version   GIF version

Theorem dfsup2 8294
Description: Quantifier free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfsup2 sup(𝐵, 𝐴, 𝑅) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))

Proof of Theorem dfsup2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 8292 . 2 sup(𝐵, 𝐴, 𝑅) = {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
2 dfrab3 3878 . . . 4 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (𝐴 ∩ {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))})
3 abeq1 2730 . . . . . . 7 ({𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))) ↔ ∀𝑥((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ 𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))))
4 vex 3189 . . . . . . . . 9 𝑥 ∈ V
5 eldif 3565 . . . . . . . . 9 (𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))))
64, 5mpbiran 952 . . . . . . . 8 (𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))) ↔ ¬ 𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
74elima 5430 . . . . . . . . . . . 12 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦𝐵 𝑦𝑅𝑥)
8 dfrex2 2990 . . . . . . . . . . . 12 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
97, 8bitri 264 . . . . . . . . . . 11 (𝑥 ∈ (𝑅𝐵) ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
104elima 5430 . . . . . . . . . . . 12 (𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵))) ↔ ∃𝑦 ∈ (𝐴 ∖ (𝑅𝐵))𝑦𝑅𝑥)
11 dfrex2 2990 . . . . . . . . . . . 12 (∃𝑦 ∈ (𝐴 ∖ (𝑅𝐵))𝑦𝑅𝑥 ↔ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥)
1210, 11bitri 264 . . . . . . . . . . 11 (𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵))) ↔ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥)
139, 12orbi12i 543 . . . . . . . . . 10 ((𝑥 ∈ (𝑅𝐵) ∨ 𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))) ↔ (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∨ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥))
14 elun 3731 . . . . . . . . . 10 (𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))) ↔ (𝑥 ∈ (𝑅𝐵) ∨ 𝑥 ∈ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
15 ianor 509 . . . . . . . . . 10 (¬ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥) ↔ (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∨ ¬ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥))
1613, 14, 153bitr4i 292 . . . . . . . . 9 (𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))) ↔ ¬ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥))
1716con2bii 347 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥) ↔ ¬ 𝑥 ∈ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
18 vex 3189 . . . . . . . . . . . 12 𝑦 ∈ V
1918, 4brcnv 5265 . . . . . . . . . . 11 (𝑦𝑅𝑥𝑥𝑅𝑦)
2019notbii 310 . . . . . . . . . 10 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
2120ralbii 2974 . . . . . . . . 9 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
22 impexp 462 . . . . . . . . . . 11 (((𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝐴 → (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥)))
23 eldif 3565 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝑅𝐵)))
2423imbi1i 339 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥) ↔ ((𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥))
2518elima 5430 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑅𝐵) ↔ ∃𝑧𝐵 𝑧𝑅𝑦)
26 vex 3189 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
2726, 18brcnv 5265 . . . . . . . . . . . . . . . 16 (𝑧𝑅𝑦𝑦𝑅𝑧)
2827rexbii 3034 . . . . . . . . . . . . . . 15 (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧)
2925, 28bitri 264 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑅𝐵) ↔ ∃𝑧𝐵 𝑦𝑅𝑧)
3029imbi2i 326 . . . . . . . . . . . . 13 ((𝑦𝑅𝑥𝑦 ∈ (𝑅𝐵)) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
31 con34b 306 . . . . . . . . . . . . 13 ((𝑦𝑅𝑥𝑦 ∈ (𝑅𝐵)) ↔ (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥))
3230, 31bitr3i 266 . . . . . . . . . . . 12 ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥))
3332imbi2i 326 . . . . . . . . . . 11 ((𝑦𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝑦𝐴 → (¬ 𝑦 ∈ (𝑅𝐵) → ¬ 𝑦𝑅𝑥)))
3422, 24, 333bitr4i 292 . . . . . . . . . 10 ((𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
3534ralbii2 2972 . . . . . . . . 9 (∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
3621, 35anbi12i 732 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ (𝐴 ∖ (𝑅𝐵)) ¬ 𝑦𝑅𝑥) ↔ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
376, 17, 363bitr2ri 289 . . . . . . 7 ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ 𝑥 ∈ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))))
383, 37mpgbir 1723 . . . . . 6 {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
3938ineq2i 3789 . . . . 5 (𝐴 ∩ {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}) = (𝐴 ∩ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵))))))
40 invdif 3844 . . . . 5 (𝐴 ∩ (V ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
4139, 40eqtri 2643 . . . 4 (𝐴 ∩ {𝑥 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
422, 41eqtri 2643 . . 3 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
4342unieqi 4411 . 2 {𝑥𝐴 ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
441, 43eqtri 2643 1 sup(𝐵, 𝐴, 𝑅) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  {cab 2607  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  cdif 3552  cun 3553  cin 3554   cuni 4402   class class class wbr 4613  ccnv 5073  cima 5077  supcsup 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-sup 8292
This theorem is referenced by:  nfsup  8301
  Copyright terms: Public domain W3C validator