MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsymdif3 Structured version   Visualization version   GIF version

Theorem dfsymdif3 3848
Description: Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.)
Assertion
Ref Expression
dfsymdif3 (𝐴𝐵) = ((𝐴𝐵) ∖ (𝐴𝐵))

Proof of Theorem dfsymdif3
StepHypRef Expression
1 difin 3819 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
2 incom 3763 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
32difeq2i 3683 . . . 4 (𝐵 ∖ (𝐴𝐵)) = (𝐵 ∖ (𝐵𝐴))
4 difin 3819 . . . 4 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
53, 4eqtri 2628 . . 3 (𝐵 ∖ (𝐴𝐵)) = (𝐵𝐴)
61, 5uneq12i 3723 . 2 ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) = ((𝐴𝐵) ∪ (𝐵𝐴))
7 difundir 3835 . 2 ((𝐴𝐵) ∖ (𝐴𝐵)) = ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))
8 df-symdif 3802 . 2 (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
96, 7, 83eqtr4ri 2639 1 (𝐴𝐵) = ((𝐴𝐵) ∖ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  cdif 3533  cun 3534  cin 3535  csymdif 3801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-symdif 3802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator