Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos2 Structured version   Visualization version   GIF version

Theorem dftpos2 7414
 Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 7409 . . 3 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
21reseq2d 5428 . 2 (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹dom 𝐹))
3 reltpos 7402 . . 3 Rel tpos 𝐹
4 resdm 5476 . . 3 (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹)
53, 4ax-mp 5 . 2 (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹
6 df-tpos 7397 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
76reseq1i 5424 . . 3 (tpos 𝐹dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹)
8 resco 5677 . . 3 ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹))
9 ssun1 3809 . . . . 5 dom 𝐹 ⊆ (dom 𝐹 ∪ {∅})
10 resmpt 5484 . . . . 5 (dom 𝐹 ⊆ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥}))
119, 10ax-mp 5 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥})
1211coeq2i 5315 . . 3 (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹)) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
137, 8, 123eqtri 2677 . 2 (tpos 𝐹dom 𝐹) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
142, 5, 133eqtr3g 2708 1 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210  ∪ cuni 4468   ↦ cmpt 4762  ◡ccnv 5142  dom cdm 5143   ↾ cres 5145   ∘ ccom 5147  Rel wrel 5148  tpos ctpos 7396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-tpos 7397 This theorem is referenced by:  tposf12  7422
 Copyright terms: Public domain W3C validator