Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrcl3 Structured version   Visualization version   GIF version

Theorem dftrcl3 36928
Description: Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dftrcl3 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dftrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trcl 13433 . 2 t+ = (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp1g 13473 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
3 nnex 10781 . . . . . . . . 9 ℕ ∈ V
4 1nn 10786 . . . . . . . . 9 1 ∈ ℕ
5 oveq1 6433 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 4381 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑡𝑟𝑛))
7 oveq2 6434 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 4393 . . . . . . . . . . . 12 𝑛 ∈ ℕ (𝑡𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘)
96, 8syl6eq 2564 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘))
109cbvmptv 4576 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ (𝑡𝑟𝑘))
1110ov2ssiunov2 36908 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ ∈ V ∧ 1 ∈ ℕ) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1407 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstr3d 3507 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
14 nnuz 11463 . . . . . . . 8 ℕ = (ℤ‘1)
15 1nn0 11063 . . . . . . . 8 1 ∈ ℕ0
1610iunrelexpuztr 36927 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ = (ℤ‘1) ∧ 1 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
1714, 15, 16mp3an23 1407 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
18 fvex 5997 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V
19 trcleq2lem 13437 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2019a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
2120alrimiv 1808 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
22 elabgt 3220 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2318, 21, 22sylancr 693 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2413, 17, 23mpbir2and 958 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
25 intss1 4325 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
2624, 25syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
27 vex 3080 . . . . . . . . 9 𝑠 ∈ V
28 trcleq2lem 13437 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
2927, 28elab 3223 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
30 eqid 2514 . . . . . . . . . 10 ℕ = ℕ
3110iunrelexpmin1 36916 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ = ℕ) → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3230, 31mpan2 702 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
333219.21bi 2000 . . . . . . . 8 (𝑟 ∈ V → ((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3429, 33syl5bi 230 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3534ralrimiv 2852 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
36 ssint 4326 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
3735, 36sylibr 222 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
3826, 37eqssd 3489 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
39 oveq1 6433 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
4039iuneq2d 4381 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
41 eqid 2514 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))
42 ovex 6454 . . . . . 6 (𝑟𝑟𝑛) ∈ V
433, 42iunex 6914 . . . . 5 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
4440, 41, 43fvmpt 6075 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4538, 44eqtrd 2548 . . 3 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4645mpteq2ia 4566 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
471, 46eqtri 2536 1 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472   = wceq 1474  wcel 1938  {cab 2500  wral 2800  Vcvv 3077  wss 3444   cint 4308   ciun 4353  cmpt 4541  ccom 4936  cfv 5689  (class class class)co 6426  1c1 9692  cn 10775  0cn0 11047  cuz 11427  t+ctcl 13431  𝑟crelexp 13467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-nn 10776  df-2 10834  df-n0 11048  df-z 11119  df-uz 11428  df-seq 12532  df-trcl 13433  df-relexp 13468
This theorem is referenced by:  brfvtrcld  36929  fvtrcllb1d  36930  trclfvcom  36931  cnvtrclfv  36932  cotrcltrcl  36933  trclimalb2  36934  trclfvdecomr  36936  dfrtrcl4  36946  corcltrcl  36947  cotrclrcl  36950
  Copyright terms: Public domain W3C validator