Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2i Structured version   Visualization version   GIF version

Theorem dfvd2i 39118
Description: Inference form of dfvd2 39112. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd2i.1 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
dfvd2i (𝜑 → (𝜓𝜒))

Proof of Theorem dfvd2i
StepHypRef Expression
1 dfvd2i.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 dfvd2 39112 . 2 ((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ (𝜑 → (𝜓𝜒)))
31, 2mpbi 220 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 39110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-vd2 39111
This theorem is referenced by:  vd23  39144  in2  39147  in2an  39150  gen21  39161  gen21nv  39162  gen22  39164  exinst  39166  exinst01  39167  exinst11  39168  e2  39173  e222  39178  e233  39309  e323  39310
  Copyright terms: Public domain W3C validator