![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd2i | Structured version Visualization version GIF version |
Description: Inference form of dfvd2 39112. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd2i.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
dfvd2i | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd2i.1 | . 2 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | dfvd2 39112 | . 2 ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 39110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-vd2 39111 |
This theorem is referenced by: vd23 39144 in2 39147 in2an 39150 gen21 39161 gen21nv 39162 gen22 39164 exinst 39166 exinst01 39167 exinst11 39168 e2 39173 e222 39178 e233 39309 e323 39310 |
Copyright terms: Public domain | W3C validator |