Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaub Structured version   Visualization version   GIF version

Theorem dgraaub 37196
Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaub (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))

Proof of Theorem dgraaub
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 793 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
2 eldifsn 4287 . . . . . . 7 (𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝))
32biimpri 218 . . . . . 6 ((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
43adantr 481 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
5 simprr 795 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
6 fveq1 6147 . . . . . . 7 (𝑎 = 𝑃 → (𝑎𝐴) = (𝑃𝐴))
76eqeq1d 2623 . . . . . 6 (𝑎 = 𝑃 → ((𝑎𝐴) = 0 ↔ (𝑃𝐴) = 0))
87rspcev 3295 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑃𝐴) = 0) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
94, 5, 8syl2anc 692 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
10 elqaa 23981 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0))
111, 9, 10sylanbrc 697 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
12 dgraaval 37192 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
1311, 12syl 17 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
14 ssrab2 3666 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ ℕ
15 nnuz 11667 . . . 4 ℕ = (ℤ‘1)
1614, 15sseqtri 3616 . . 3 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1)
17 dgrnznn 23907 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)
18 eqid 2621 . . . . . 6 (deg‘𝑃) = (deg‘𝑃)
195, 18jctil 559 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0))
20 fveq2 6148 . . . . . . . 8 (𝑏 = 𝑃 → (deg‘𝑏) = (deg‘𝑃))
2120eqeq1d 2623 . . . . . . 7 (𝑏 = 𝑃 → ((deg‘𝑏) = (deg‘𝑃) ↔ (deg‘𝑃) = (deg‘𝑃)))
22 fveq1 6147 . . . . . . . 8 (𝑏 = 𝑃 → (𝑏𝐴) = (𝑃𝐴))
2322eqeq1d 2623 . . . . . . 7 (𝑏 = 𝑃 → ((𝑏𝐴) = 0 ↔ (𝑃𝐴) = 0))
2421, 23anbi12d 746 . . . . . 6 (𝑏 = 𝑃 → (((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)))
2524rspcev 3295 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
264, 19, 25syl2anc 692 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
27 eqeq2 2632 . . . . . . 7 (𝑎 = (deg‘𝑃) → ((deg‘𝑏) = 𝑎 ↔ (deg‘𝑏) = (deg‘𝑃)))
2827anbi1d 740 . . . . . 6 (𝑎 = (deg‘𝑃) → (((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
2928rexbidv 3045 . . . . 5 (𝑎 = (deg‘𝑃) → (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
3029elrab 3346 . . . 4 ((deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ↔ ((deg‘𝑃) ∈ ℕ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
3117, 26, 30sylanbrc 697 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)})
32 infssuzle 11715 . . 3 (({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1) ∧ (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3316, 31, 32sylancr 694 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3413, 33eqbrtrd 4635 1 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  {crab 2911  cdif 3552  wss 3555  {csn 4148   class class class wbr 4613  cfv 5847  infcinf 8291  cc 9878  cr 9879  0cc0 9880  1c1 9881   < clt 10018  cle 10019  cn 10964  cuz 11631  cq 11732  0𝑝c0p 23342  Polycply 23844  degcdgr 23847  𝔸caa 23973  degAAcdgraa 37188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-0p 23343  df-ply 23848  df-coe 23850  df-dgr 23851  df-aa 23974  df-dgraa 37190
This theorem is referenced by:  dgraa0p  37197
  Copyright terms: Public domain W3C validator