MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrle Structured version   Visualization version   GIF version

Theorem dgrle 24832
Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
dgrle (𝜑 → (deg‘𝐹) ≤ 𝑁)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem dgrle
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 dgrle.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
4 dgrle.4 . . . . . . . . . 10 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
51, 2, 3, 4coeeq2 24831 . . . . . . . . 9 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
65ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
76fveq1d 6671 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
8 nfcv 2977 . . . . . . . . . 10 𝑘𝑚
9 nfv 1911 . . . . . . . . . . 11 𝑘 ¬ 𝑚𝑁
10 nffvmpt1 6680 . . . . . . . . . . . 12 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
1110nfeq1 2993 . . . . . . . . . . 11 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0
129, 11nfim 1893 . . . . . . . . . 10 𝑘𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
13 breq1 5068 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
1413notbid 320 . . . . . . . . . . 11 (𝑘 = 𝑚 → (¬ 𝑘𝑁 ↔ ¬ 𝑚𝑁))
15 fveqeq2 6678 . . . . . . . . . . 11 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
1614, 15imbi12d 347 . . . . . . . . . 10 (𝑘 = 𝑚 → ((¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)))
17 iffalse 4475 . . . . . . . . . . . . 13 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
1817fveq2d 6673 . . . . . . . . . . . 12 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = ( I ‘0))
19 0cn 10632 . . . . . . . . . . . . 13 0 ∈ ℂ
20 fvi 6739 . . . . . . . . . . . . 13 (0 ∈ ℂ → ( I ‘0) = 0)
2119, 20ax-mp 5 . . . . . . . . . . . 12 ( I ‘0) = 0
2218, 21syl6eq 2872 . . . . . . . . . . 11 𝑘𝑁 → ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0)
23 eqid 2821 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
2423fvmpt2i 6777 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘𝑁, 𝐴, 0)))
2524eqeq1d 2823 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘𝑁, 𝐴, 0)) = 0))
2622, 25syl5ibr 248 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (¬ 𝑘𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 0))
278, 12, 16, 26vtoclgaf 3572 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (¬ 𝑚𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0))
2827imp 409 . . . . . . . 8 ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
2928adantll 712 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) = 0)
307, 29eqtrd 2856 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚𝑁) → ((coeff‘𝐹)‘𝑚) = 0)
3130ex 415 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → (¬ 𝑚𝑁 → ((coeff‘𝐹)‘𝑚) = 0))
3231necon1ad 3033 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
3332ralrimiva 3182 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁))
34 eqid 2821 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
3534coef3 24821 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
361, 35syl 17 . . . 4 (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ)
37 plyco0 24781 . . . 4 ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
382, 36, 37syl2anc 586 . . 3 (𝜑 → (((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚𝑁)))
3933, 38mpbird 259 . 2 (𝜑 → ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0})
40 eqid 2821 . . 3 (deg‘𝐹) = (deg‘𝐹)
4134, 40dgrlb 24825 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁)
421, 2, 39, 41syl3anc 1367 1 (𝜑 → (deg‘𝐹) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  ifcif 4466  {csn 4566   class class class wbr 5065  cmpt 5145   I cid 5458  cima 5557  wf 6350  cfv 6354  (class class class)co 7155  cc 10534  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cle 10675  0cn0 11896  cuz 12242  ...cfz 12891  cexp 13428  Σcsu 15041  Polycply 24773  coeffccoe 24775  degcdgr 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-0p 24270  df-ply 24777  df-coe 24779  df-dgr 24780
This theorem is referenced by:  dgreq  24833  0dgr  24834  coeaddlem  24838  coemullem  24839  taylply2  24955
  Copyright terms: Public domain W3C validator