MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrsub Structured version   Visualization version   GIF version

Theorem dgrsub 23749
Description: The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
dgrsub.1 𝑀 = (deg‘𝐹)
dgrsub.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgrsub ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))

Proof of Theorem dgrsub
StepHypRef Expression
1 plyssc 23677 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3563 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 ssid 3586 . . . . 5 ℂ ⊆ ℂ
4 neg1cn 10971 . . . . 5 -1 ∈ ℂ
5 plyconst 23683 . . . . 5 ((ℂ ⊆ ℂ ∧ -1 ∈ ℂ) → (ℂ × {-1}) ∈ (Poly‘ℂ))
63, 4, 5mp2an 703 . . . 4 (ℂ × {-1}) ∈ (Poly‘ℂ)
71sseli 3563 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
8 plymulcl 23698 . . . 4 (((ℂ × {-1}) ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ)) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ))
96, 7, 8sylancr 693 . . 3 (𝐺 ∈ (Poly‘𝑆) → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ))
10 dgrsub.1 . . . 4 𝑀 = (deg‘𝐹)
11 eqid 2609 . . . 4 (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺))
1210, 11dgradd 23744 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘ℂ)) → (deg‘(𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀))
132, 9, 12syl2an 492 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) ≤ if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀))
14 plyf 23675 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
15 plyf 23675 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
16 cnex 9873 . . . . 5 ℂ ∈ V
17 ofnegsub 10865 . . . . 5 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
1816, 17mp3an1 1402 . . . 4 ((𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
1914, 15, 18syl2an 492 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹𝑓𝐺))
2019fveq2d 6092 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺))) = (deg‘(𝐹𝑓𝐺)))
21 neg1ne0 10973 . . . . . . 7 -1 ≠ 0
22 dgrmulc 23748 . . . . . . 7 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘𝐺))
234, 21, 22mp3an12 1405 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = (deg‘𝐺))
24 dgrsub.2 . . . . . 6 𝑁 = (deg‘𝐺)
2523, 24syl6eqr 2661 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = 𝑁)
2625adantl 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) = 𝑁)
2726breq2d 4589 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)) ↔ 𝑀𝑁))
2827, 26ifbieq1d 4058 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀 ≤ (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), (deg‘((ℂ × {-1}) ∘𝑓 · 𝐺)), 𝑀) = if(𝑀𝑁, 𝑁, 𝑀))
2913, 20, 283brtr3d 4608 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  Vcvv 3172  wss 3539  ifcif 4035  {csn 4124   class class class wbr 4577   × cxp 5026  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6770  cc 9790  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  cle 9931  cmin 10117  -cneg 10118  Polycply 23661  degcdgr 23664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-0p 23160  df-ply 23665  df-coe 23667  df-dgr 23668
This theorem is referenced by:  dgrcolem2  23751  plydivlem4  23772  plydiveu  23774  dgrsub2  36520
  Copyright terms: Public domain W3C validator