![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0 | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.) |
Ref | Expression |
---|---|
dia0.b | ⊢ 𝐵 = (Base‘𝐾) |
dia0.z | ⊢ 0 = (0.‘𝐾) |
dia0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | hlatl 34965 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
3 | dia0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | dia0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
5 | 3, 4 | atl0cl 34908 | . . . . 5 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝐾 ∈ HL → 0 ∈ 𝐵) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐵) |
8 | dia0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | 3, 8 | lhpbase 35602 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
10 | eqid 2651 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | 3, 10, 4 | atl0le 34909 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑊 ∈ 𝐵) → 0 (le‘𝐾)𝑊) |
12 | 2, 9, 11 | syl2an 493 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
13 | eqid 2651 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
14 | eqid 2651 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
15 | dia0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
16 | 3, 10, 8, 13, 14, 15 | diaval 36638 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( 0 ∈ 𝐵 ∧ 0 (le‘𝐾)𝑊)) → (𝐼‘ 0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 }) |
17 | 1, 7, 12, 16 | syl12anc 1364 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 }) |
18 | 2 | ad2antrr 762 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ AtLat) |
19 | 3, 8, 13, 14 | trlcl 35769 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) |
20 | 3, 10, 4 | atlle0 34910 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
21 | 18, 19, 20 | syl2anc 694 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
22 | 3, 4, 8, 13, 14 | trlid0b 35783 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
23 | 21, 22 | bitr4d 271 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ 𝑓 = ( I ↾ 𝐵))) |
24 | 23 | rabbidva 3219 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 } = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)}) |
25 | 3, 8, 13 | idltrn 35754 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
26 | rabsn 4288 | . . 3 ⊢ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)}) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)}) |
28 | 17, 24, 27 | 3eqtrd 2689 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 {csn 4210 class class class wbr 4685 I cid 5052 ↾ cres 5145 ‘cfv 5926 Basecbs 15904 lecple 15995 0.cp0 17084 AtLatcal 34869 HLchlt 34955 LHypclh 35588 LTrncltrn 35705 trLctrl 35763 DIsoAcdia 36634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-disoa 36635 |
This theorem is referenced by: dib0 36770 |
Copyright terms: Public domain | W3C validator |