Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia0 Structured version   Visualization version   GIF version

Theorem dia0 38190
Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
dia0.b 𝐵 = (Base‘𝐾)
dia0.z 0 = (0.‘𝐾)
dia0.h 𝐻 = (LHyp‘𝐾)
dia0.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})

Proof of Theorem dia0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlatl 36498 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3 dia0.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dia0.z . . . . . 6 0 = (0.‘𝐾)
53, 4atl0cl 36441 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
62, 5syl 17 . . . 4 (𝐾 ∈ HL → 0𝐵)
76adantr 483 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐵)
8 dia0.h . . . . 5 𝐻 = (LHyp‘𝐾)
93, 8lhpbase 37136 . . . 4 (𝑊𝐻𝑊𝐵)
10 eqid 2823 . . . . 5 (le‘𝐾) = (le‘𝐾)
113, 10, 4atl0le 36442 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑊𝐵) → 0 (le‘𝐾)𝑊)
122, 9, 11syl2an 597 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (le‘𝐾)𝑊)
13 eqid 2823 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2823 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
15 dia0.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
163, 10, 8, 13, 14, 15diaval 38170 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 0𝐵0 (le‘𝐾)𝑊)) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
171, 7, 12, 16syl12anc 834 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
182ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ AtLat)
193, 8, 13, 14trlcl 37302 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵)
203, 10, 4atlle0 36443 . . . . 5 ((𝐾 ∈ AtLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2118, 19, 20syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
223, 4, 8, 13, 14trlid0b 37316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2321, 22bitr4d 284 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0𝑓 = ( I ↾ 𝐵)))
2423rabbidva 3480 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 } = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)})
253, 8, 13idltrn 37288 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
26 rabsn 4659 . . 3 (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2725, 26syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2817, 24, 273eqtrd 2862 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3144  {csn 4569   class class class wbr 5068   I cid 5461  cres 5559  cfv 6357  Basecbs 16485  lecple 16574  0.cp0 17649  AtLatcal 36402  HLchlt 36488  LHypclh 37122  LTrncltrn 37239  trLctrl 37296  DIsoAcdia 38166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-disoa 38167
This theorem is referenced by:  dib0  38302
  Copyright terms: Public domain W3C validator