Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1dim Structured version   Visualization version   GIF version

Theorem dia1dim 35192
Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dia1dim.h 𝐻 = (LHyp‘𝐾)
dia1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dia1dim.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)})
Distinct variable groups:   𝐸,𝑠   𝑔,𝑠,𝐹   𝑔,𝐻,𝑠   𝑔,𝐾,𝑠   𝑅,𝑔,𝑠   𝑇,𝑔,𝑠   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐸(𝑔)   𝐼(𝑔,𝑠)

Proof of Theorem dia1dim
StepHypRef Expression
1 simpl 471 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2609 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 dia1dim.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dia1dim.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dia1dim.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5trlcl 34293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
7 eqid 2609 . . . 4 (le‘𝐾) = (le‘𝐾)
87, 3, 4, 5trlle 34313 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹)(le‘𝐾)𝑊)
9 dia1dim.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
102, 7, 3, 4, 5, 9diaval 35163 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅𝐹)) = {𝑔𝑇 ∣ (𝑅𝑔)(le‘𝐾)(𝑅𝐹)})
111, 6, 8, 10syl12anc 1315 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔𝑇 ∣ (𝑅𝑔)(le‘𝐾)(𝑅𝐹)})
12 dia1dim.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
137, 3, 4, 5, 12dva1dim 35115 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔)(le‘𝐾)(𝑅𝐹)})
1411, 13eqtr4d 2646 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  {cab 2595  wrex 2896  {crab 2899   class class class wbr 4577  cfv 5790  Basecbs 15644  lecple 15724  HLchlt 33479  LHypclh 34112  LTrncltrn 34229  trLctrl 34287  TEndoctendo 34882  DIsoAcdia 35159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-riotaBAD 33081
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-undef 7264  df-map 7724  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33305  df-ol 33307  df-oml 33308  df-covers 33395  df-ats 33396  df-atl 33427  df-cvlat 33451  df-hlat 33480  df-llines 33626  df-lplanes 33627  df-lvols 33628  df-lines 33629  df-psubsp 33631  df-pmap 33632  df-padd 33924  df-lhyp 34116  df-laut 34117  df-ldil 34232  df-ltrn 34233  df-trl 34288  df-tendo 34885  df-disoa 35160
This theorem is referenced by:  dia1dim2  35193  dib1dim  35296
  Copyright terms: Public domain W3C validator