Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Structured version   Visualization version   GIF version

Theorem dia2dimlem2 35831
Description: Lemma for dia2dim 35843. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l = (le‘𝐾)
dia2dimlem2.j = (join‘𝐾)
dia2dimlem2.m = (meet‘𝐾)
dia2dimlem2.a 𝐴 = (Atoms‘𝐾)
dia2dimlem2.h 𝐻 = (LHyp‘𝐾)
dia2dimlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem2.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem2.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem2.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem2.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem2.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem2.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem2.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem2.g (𝜑𝐺𝑇)
dia2dimlem2.gv (𝜑 → (𝐺𝑃) = 𝑄)
Assertion
Ref Expression
dia2dimlem2 (𝜑 → (𝑅𝐺) = 𝑈)

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 475 . . . . . . . 8 (𝜑𝐾 ∈ HL)
3 hllat 34127 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . . . . . 7 (𝜑𝐾 ∈ Lat)
5 dia2dimlem2.p . . . . . . . . 9 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
65simpld 475 . . . . . . . 8 (𝜑𝑃𝐴)
7 eqid 2621 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
8 dia2dimlem2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
97, 8atbase 34053 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
106, 9syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
11 dia2dimlem2.u . . . . . . . . 9 (𝜑 → (𝑈𝐴𝑈 𝑊))
1211simpld 475 . . . . . . . 8 (𝜑𝑈𝐴)
137, 8atbase 34053 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
15 dia2dimlem2.l . . . . . . . 8 = (le‘𝐾)
16 dia2dimlem2.j . . . . . . . 8 = (join‘𝐾)
177, 15, 16latlej2 16982 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 (𝑃 𝑈))
184, 10, 14, 17syl3anc 1323 . . . . . 6 (𝜑𝑈 (𝑃 𝑈))
197, 16, 8hlatjcl 34130 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
202, 6, 12, 19syl3anc 1323 . . . . . . 7 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
21 dia2dimlem2.m . . . . . . . 8 = (meet‘𝐾)
227, 15, 21latleeqm2 17001 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
234, 14, 20, 22syl3anc 1323 . . . . . 6 (𝜑 → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
2418, 23mpbid 222 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) = 𝑈)
25 dia2dimlem2.rf . . . . . . . 8 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
26 dia2dimlem2.f . . . . . . . . . 10 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
27 dia2dimlem2.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
28 dia2dimlem2.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
29 dia2dimlem2.r . . . . . . . . . . 11 𝑅 = ((trL‘𝐾)‘𝑊)
3015, 8, 27, 28, 29trlat 34933 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
311, 5, 26, 30syl3anc 1323 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ 𝐴)
32 dia2dimlem2.v . . . . . . . . . 10 (𝜑 → (𝑉𝐴𝑉 𝑊))
3332simpld 475 . . . . . . . . 9 (𝜑𝑉𝐴)
34 dia2dimlem2.rv . . . . . . . . 9 (𝜑 → (𝑅𝐹) ≠ 𝑉)
3515, 16, 8hlatexch2 34159 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑈𝐴𝑉𝐴) ∧ (𝑅𝐹) ≠ 𝑉) → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
362, 31, 12, 33, 34, 35syl131anc 1336 . . . . . . . 8 (𝜑 → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
3725, 36mpd 15 . . . . . . 7 (𝜑𝑈 ((𝑅𝐹) 𝑉))
3826simpld 475 . . . . . . . . . 10 (𝜑𝐹𝑇)
3915, 16, 21, 8, 27, 28, 29trlval2 34927 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
401, 38, 5, 39syl3anc 1323 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4140oveq1d 6619 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑉))
4215, 8, 27, 28ltrnel 34902 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
431, 38, 5, 42syl3anc 1323 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
4443simpld 475 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ 𝐴)
457, 16, 8hlatjcl 34130 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
462, 6, 44, 45syl3anc 1323 . . . . . . . . . 10 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
471simprd 479 . . . . . . . . . . 11 (𝜑𝑊𝐻)
487, 27lhpbase 34761 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4947, 48syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ (Base‘𝐾))
5032simprd 479 . . . . . . . . . 10 (𝜑𝑉 𝑊)
517, 15, 16, 21, 8atmod4i1 34629 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
522, 33, 46, 49, 50, 51syl131anc 1336 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
5316, 8hlatjass 34133 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴)) → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
542, 6, 44, 33, 53syl13anc 1325 . . . . . . . . . 10 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
5554oveq1d 6619 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑉) 𝑊) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5652, 55eqtrd 2655 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5741, 56eqtrd 2655 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5837, 57breqtrd 4639 . . . . . 6 (𝜑𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
597, 16, 8hlatjcl 34130 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
602, 44, 33, 59syl3anc 1323 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
617, 16latjcl 16972 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
624, 10, 60, 61syl3anc 1323 . . . . . . . 8 (𝜑 → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
637, 21latmcl 16973 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
644, 62, 49, 63syl3anc 1323 . . . . . . 7 (𝜑 → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
657, 15, 21latmlem2 17003 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾))) → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
664, 14, 64, 20, 65syl13anc 1325 . . . . . 6 (𝜑 → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
6758, 66mpd 15 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
6824, 67eqbrtrrd 4637 . . . 4 (𝜑𝑈 ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
69 dia2dimlem2.g . . . . . . 7 (𝜑𝐺𝑇)
7015, 16, 21, 8, 27, 28, 29trlval2 34927 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
711, 69, 5, 70syl3anc 1323 . . . . . 6 (𝜑 → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
72 dia2dimlem2.gv . . . . . . . . . 10 (𝜑 → (𝐺𝑃) = 𝑄)
73 dia2dimlem2.q . . . . . . . . . 10 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
7472, 73syl6eq 2671 . . . . . . . . 9 (𝜑 → (𝐺𝑃) = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
7574oveq2d 6620 . . . . . . . 8 (𝜑 → (𝑃 (𝐺𝑃)) = (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))))
7675oveq1d 6619 . . . . . . 7 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊))
7715, 16, 8hlatlej1 34138 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → 𝑃 (𝑃 𝑈))
782, 6, 12, 77syl3anc 1323 . . . . . . . . . 10 (𝜑𝑃 (𝑃 𝑈))
797, 15, 16, 21, 8atmod3i1 34627 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑈)) → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
802, 6, 20, 60, 78, 79syl131anc 1336 . . . . . . . . 9 (𝜑 → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
8180oveq1d 6619 . . . . . . . 8 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊))
82 hlol 34125 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
832, 82syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OL)
847, 21latmassOLD 33993 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8583, 20, 62, 49, 84syl13anc 1325 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8681, 85eqtrd 2655 . . . . . . 7 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8776, 86eqtrd 2655 . . . . . 6 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8871, 87eqtrd 2655 . . . . 5 (𝜑 → (𝑅𝐺) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8988eqcomd 2627 . . . 4 (𝜑 → ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)) = (𝑅𝐺))
9068, 89breqtrd 4639 . . 3 (𝜑𝑈 (𝑅𝐺))
91 hlatl 34124 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
922, 91syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
93 hlop 34126 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
942, 93syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
95 eqid 2621 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
96 eqid 2621 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9795, 96, 80ltat 34055 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑈𝐴) → (0.‘𝐾)(lt‘𝐾)𝑈)
9894, 12, 97syl2anc 692 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑈)
99 hlpos 34129 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
1002, 99syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
1017, 95op0cl 33948 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10294, 101syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
1037, 27, 28, 29trlcl 34928 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
1041, 69, 103syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑅𝐺) ∈ (Base‘𝐾))
1057, 15, 96pltletr 16892 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
106100, 102, 14, 104, 105syl13anc 1325 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10798, 90, 106mp2and 714 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺))
1087, 96, 95opltn0 33954 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
10994, 104, 108syl2anc 692 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
110107, 109mpbid 222 . . . . . 6 (𝜑 → (𝑅𝐺) ≠ (0.‘𝐾))
111110neneqd 2795 . . . . 5 (𝜑 → ¬ (𝑅𝐺) = (0.‘𝐾))
11295, 8, 27, 28, 29trlator0 34935 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
1131, 69, 112syl2anc 692 . . . . . . 7 (𝜑 → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
114113orcomd 403 . . . . . 6 (𝜑 → ((𝑅𝐺) = (0.‘𝐾) ∨ (𝑅𝐺) ∈ 𝐴))
115114ord 392 . . . . 5 (𝜑 → (¬ (𝑅𝐺) = (0.‘𝐾) → (𝑅𝐺) ∈ 𝐴))
116111, 115mpd 15 . . . 4 (𝜑 → (𝑅𝐺) ∈ 𝐴)
11715, 8atcmp 34075 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11892, 12, 116, 117syl3anc 1323 . . 3 (𝜑 → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11990, 118mpbid 222 . 2 (𝜑𝑈 = (𝑅𝐺))
120119eqcomd 2627 1 (𝜑 → (𝑅𝐺) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  Posetcpo 16861  ltcplt 16862  joincjn 16865  meetcmee 16866  0.cp0 16958  Latclat 16966  OPcops 33936  OLcol 33938  Atomscatm 34027  AtLatcal 34028  HLchlt 34114  LHypclh 34747  LTrncltrn 34864  trLctrl 34922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-map 7804  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-psubsp 34266  df-pmap 34267  df-padd 34559  df-lhyp 34751  df-laut 34752  df-ldil 34867  df-ltrn 34868  df-trl 34923
This theorem is referenced by:  dia2dimlem5  35834
  Copyright terms: Public domain W3C validator