MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diag11 Structured version   Visualization version   GIF version

Theorem diag11 17495
Description: Value of the constant functor at an object. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l 𝐿 = (𝐶Δfunc𝐷)
diagval.c (𝜑𝐶 ∈ Cat)
diagval.d (𝜑𝐷 ∈ Cat)
diag11.a 𝐴 = (Base‘𝐶)
diag11.c (𝜑𝑋𝐴)
diag11.k 𝐾 = ((1st𝐿)‘𝑋)
diag11.b 𝐵 = (Base‘𝐷)
diag11.y (𝜑𝑌𝐵)
Assertion
Ref Expression
diag11 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)

Proof of Theorem diag11
StepHypRef Expression
1 diag11.k . . . . 5 𝐾 = ((1st𝐿)‘𝑋)
2 diagval.l . . . . . . . 8 𝐿 = (𝐶Δfunc𝐷)
3 diagval.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
4 diagval.d . . . . . . . 8 (𝜑𝐷 ∈ Cat)
52, 3, 4diagval 17492 . . . . . . 7 (𝜑𝐿 = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))
65fveq2d 6676 . . . . . 6 (𝜑 → (1st𝐿) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))))
76fveq1d 6674 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
81, 7syl5eq 2870 . . . 4 (𝜑𝐾 = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))
98fveq2d 6676 . . 3 (𝜑 → (1st𝐾) = (1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)))
109fveq1d 6674 . 2 (𝜑 → ((1st𝐾)‘𝑌) = ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌))
11 eqid 2823 . . 3 (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷))
12 diag11.a . . 3 𝐴 = (Base‘𝐶)
13 eqid 2823 . . . 4 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
14 eqid 2823 . . . 4 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
1513, 3, 4, 141stfcl 17449 . . 3 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
16 diag11.b . . 3 𝐵 = (Base‘𝐷)
17 diag11.c . . 3 (𝜑𝑋𝐴)
18 eqid 2823 . . 3 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋)
19 diag11.y . . 3 (𝜑𝑌𝐵)
2011, 12, 3, 4, 15, 16, 17, 18, 19curf11 17478 . 2 (𝜑 → ((1st ‘((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 1stF 𝐷)))‘𝑋))‘𝑌) = (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌))
21 df-ov 7161 . . . 4 (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)
2213, 12, 16xpcbas 17430 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
23 eqid 2823 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2417, 19opelxpd 5595 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
2513, 22, 23, 3, 4, 14, 241stf1 17444 . . . 4 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
2621, 25syl5eq 2870 . . 3 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = (1st ‘⟨𝑋, 𝑌⟩))
27 op1stg 7703 . . . 4 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2817, 19, 27syl2anc 586 . . 3 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2926, 28eqtrd 2858 . 2 (𝜑 → (𝑋(1st ‘(𝐶 1stF 𝐷))𝑌) = 𝑋)
3010, 20, 293eqtrd 2862 1 (𝜑 → ((1st𝐾)‘𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cop 4575   × cxp 5555  cfv 6357  (class class class)co 7158  1st c1st 7689  Basecbs 16485  Hom chom 16578  Catccat 16937   ×c cxpc 17420   1stF c1stf 17421   curryF ccurf 17462  Δfunccdiag 17464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-func 17130  df-xpc 17424  df-1stf 17425  df-curf 17466  df-diag 17468
This theorem is referenced by:  curf2ndf  17499
  Copyright terms: Public domain W3C validator