Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dialss Structured version   Visualization version   GIF version

Theorem dialss 35177
Description: The value of partial isomorphism A is a subspace of partial vector space A. Part of Lemma M of [Crawley] p. 120 line 26. (Contributed by NM, 17-Jan-2014.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
dialss.b 𝐵 = (Base‘𝐾)
dialss.l = (le‘𝐾)
dialss.h 𝐻 = (LHyp‘𝐾)
dialss.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dialss.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dialss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
dialss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem dialss
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2610 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 dialss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2609 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 dialss.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
5 eqid 2609 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2609 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvabase 35137 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2615 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 479 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2609 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2609 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 4, 11dvavbase 35143 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = ((LTrn‘𝐾)‘𝑊))
1312eqcomd 2615 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝑈))
1413adantr 479 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝑈))
15 eqidd 2610 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2610 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 dialss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 dialss.b . . 3 𝐵 = (Base‘𝐾)
20 dialss.l . . 3 = (le‘𝐾)
21 dialss.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
2219, 20, 2, 10, 21diass 35173 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ ((LTrn‘𝐾)‘𝑊))
2319, 20, 2, 21dian0 35170 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
24 simpll 785 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simpr1 1059 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
26 simplr 787 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑋𝐵𝑋 𝑊))
27 simpr2 1060 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (𝐼𝑋))
2819, 20, 2, 10, 21diael 35174 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → 𝑎 ∈ ((LTrn‘𝐾)‘𝑊))
2924, 26, 27, 28syl3anc 1317 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ ((LTrn‘𝐾)‘𝑊))
30 eqid 2609 . . . . . . 7 ( ·𝑠𝑈) = ( ·𝑠𝑈)
312, 10, 3, 4, 30dvavsca 35147 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑥( ·𝑠𝑈)𝑎) = (𝑥𝑎))
3224, 25, 29, 31syl12anc 1315 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥( ·𝑠𝑈)𝑎) = (𝑥𝑎))
3332oveq1d 6542 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ((𝑥𝑎)(+g𝑈)𝑏))
342, 10, 3tendocl 34897 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
3524, 25, 29, 34syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
36 simpr3 1061 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (𝐼𝑋))
3719, 20, 2, 10, 21diael 35174 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → 𝑏 ∈ ((LTrn‘𝐾)‘𝑊))
3824, 26, 36, 37syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ ((LTrn‘𝐾)‘𝑊))
39 eqid 2609 . . . . . 6 (+g𝑈) = (+g𝑈)
402, 10, 4, 39dvavadd 35145 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊))) → ((𝑥𝑎)(+g𝑈)𝑏) = ((𝑥𝑎) ∘ 𝑏))
4124, 35, 38, 40syl12anc 1315 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥𝑎)(+g𝑈)𝑏) = ((𝑥𝑎) ∘ 𝑏))
4233, 41eqtrd 2643 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ((𝑥𝑎) ∘ 𝑏))
432, 10ltrnco 34849 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
4424, 35, 38, 43syl3anc 1317 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
45 hllat 33492 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4645ad3antrrr 761 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ Lat)
47 eqid 2609 . . . . . . 7 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4819, 2, 10, 47trlcl 34293 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ∈ 𝐵)
4924, 44, 48syl2anc 690 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ∈ 𝐵)
5019, 2, 10, 47trlcl 34293 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵)
5124, 35, 50syl2anc 690 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵)
5219, 2, 10, 47trlcl 34293 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵)
5324, 38, 52syl2anc 690 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵)
54 eqid 2609 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
5519, 54latjcl 16823 . . . . . 6 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ∈ 𝐵)
5646, 51, 53, 55syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) ∈ 𝐵)
57 simplrl 795 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑋𝐵)
5820, 54, 2, 10, 47trlco 34857 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑎) ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑏 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)))
5924, 35, 38, 58syl3anc 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)))
6019, 2, 10, 47trlcl 34293 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑎) ∈ 𝐵)
6124, 29, 60syl2anc 690 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑎) ∈ 𝐵)
6220, 2, 10, 47, 3tendotp 34891 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) (((trL‘𝐾)‘𝑊)‘𝑎))
6324, 25, 29, 62syl3anc 1317 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) (((trL‘𝐾)‘𝑊)‘𝑎))
6419, 20, 2, 10, 47, 21diatrl 35175 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (((trL‘𝐾)‘𝑊)‘𝑎) 𝑋)
6524, 26, 27, 64syl3anc 1317 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑎) 𝑋)
6619, 20, 46, 51, 61, 57, 63, 65lattrd 16830 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) 𝑋)
6719, 20, 2, 10, 47, 21diatrl 35175 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋)
6824, 26, 36, 67syl3anc 1317 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋)
6919, 20, 54latjle12 16834 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) ∈ 𝐵𝑋𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) 𝑋))
7046, 51, 53, 57, 69syl13anc 1319 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥𝑎)) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘𝑏) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) 𝑋))
7166, 68, 70mpbi2and 957 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥𝑎))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑏)) 𝑋)
7219, 20, 46, 49, 56, 57, 59, 71lattrd 16830 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) 𝑋)
7319, 20, 2, 10, 47, 21diaelval 35164 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((𝑥𝑎) ∘ 𝑏) ∈ (𝐼𝑋) ↔ (((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) 𝑋)))
7473adantr 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((𝑥𝑎) ∘ 𝑏) ∈ (𝐼𝑋) ↔ (((𝑥𝑎) ∘ 𝑏) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥𝑎) ∘ 𝑏)) 𝑋)))
7544, 72, 74mpbir2and 958 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥𝑎) ∘ 𝑏) ∈ (𝐼𝑋))
7642, 75eqeltrd 2687 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑋))
771, 9, 14, 15, 16, 18, 22, 23, 76islssd 18706 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  ccom 5032  cfv 5790  (class class class)co 6527  Basecbs 15644  +gcplusg 15717  Scalarcsca 15720   ·𝑠 cvsca 15721  lecple 15724  joincjn 16716  Latclat 16817  LSubSpclss 18702  HLchlt 33479  LHypclh 34112  LTrncltrn 34229  trLctrl 34287  TEndoctendo 34882  DVecAcdveca 35132  DIsoAcdia 35159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-riotaBAD 33081
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-undef 7264  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-plusg 15730  df-mulr 15731  df-sca 15733  df-vsca 15734  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-lss 18703  df-oposet 33305  df-ol 33307  df-oml 33308  df-covers 33395  df-ats 33396  df-atl 33427  df-cvlat 33451  df-hlat 33480  df-llines 33626  df-lplanes 33627  df-lvols 33628  df-lines 33629  df-psubsp 33631  df-pmap 33632  df-padd 33924  df-lhyp 34116  df-laut 34117  df-ldil 34232  df-ltrn 34233  df-trl 34288  df-tendo 34885  df-edring 34887  df-dveca 35133  df-disoa 35160
This theorem is referenced by:  diasslssN  35190  dia2dimlem5  35199  dia2dimlem7  35201  dia2dimlem9  35203  dia2dimlem10  35204  dia2dimlem13  35207  diblsmopel  35302
  Copyright terms: Public domain W3C validator