Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diatrl Structured version   Visualization version   GIF version

Theorem diatrl 35813
Description: Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014.)
Hypotheses
Ref Expression
diatrl.b 𝐵 = (Base‘𝐾)
diatrl.l = (le‘𝐾)
diatrl.h 𝐻 = (LHyp‘𝐾)
diatrl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diatrl.r 𝑅 = ((trL‘𝐾)‘𝑊)
diatrl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diatrl (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝐹 ∈ (𝐼𝑋)) → (𝑅𝐹) 𝑋)

Proof of Theorem diatrl
StepHypRef Expression
1 diatrl.b . . . 4 𝐵 = (Base‘𝐾)
2 diatrl.l . . . 4 = (le‘𝐾)
3 diatrl.h . . . 4 𝐻 = (LHyp‘𝐾)
4 diatrl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 diatrl.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
6 diatrl.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6diaelval 35802 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))
8 simpr 477 . . 3 ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) → (𝑅𝐹) 𝑋)
97, 8syl6bi 243 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (𝐼𝑋) → (𝑅𝐹) 𝑋))
1093impia 1258 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝐹 ∈ (𝐼𝑋)) → (𝑅𝐹) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  Basecbs 15781  lecple 15869  LHypclh 34750  LTrncltrn 34867  trLctrl 34925  DIsoAcdia 35797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-disoa 35798
This theorem is referenced by:  dialss  35815  dibelval1st2N  35920  diblss  35939
  Copyright terms: Public domain W3C validator