Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Visualization version   GIF version

Theorem dib1dim 38303
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b 𝐵 = (Base‘𝐾)
dib1dim.h 𝐻 = (LHyp‘𝐾)
dib1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dib1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dib1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dib1dim.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dib1dim.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dib1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Distinct variable groups:   𝐵,   𝑔,𝑠,𝐸   𝑔,𝐹,𝑠   𝐻,𝑠   ,𝑠,𝐾   𝑔,𝑂,𝑠   𝑅,𝑠   𝑔,,𝑇,𝑠   ,𝑊,𝑠
Allowed substitution hints:   𝐵(𝑔,𝑠)   𝑅(𝑔,)   𝐸()   𝐹()   𝐻(𝑔,)   𝐼(𝑔,,𝑠)   𝐾(𝑔)   𝑂()   𝑊(𝑔)

Proof of Theorem dib1dim
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dib1dim.b . . . . 5 𝐵 = (Base‘𝐾)
3 dib1dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dib1dim.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dib1dim.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5trlcl 37302 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
7 eqid 2823 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 3, 4, 5trlle 37322 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹)(le‘𝐾)𝑊)
9 dib1dim.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
10 eqid 2823 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
11 dib1dim.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
122, 7, 3, 4, 9, 10, 11dibval2 38282 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐹) ∈ 𝐵 ∧ (𝑅𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
131, 6, 8, 12syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
14 relxp 5575 . . . 4 Rel ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂})
15 opelxp 5593 . . . . 5 (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}))
16 dib1dim.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
173, 4, 5, 16, 10dia1dim 38199 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) = {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)})
1817abeq2d 2949 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ↔ ∃𝑠𝐸 𝑓 = (𝑠𝐹)))
1918anbi1d 631 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂})))
203, 4, 16tendocl 37905 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
21203expa 1114 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
2221an32s 650 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑠𝐹) ∈ 𝑇)
232, 3, 4, 16, 9tendo0cl 37928 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2423ad2antrr 724 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → 𝑂𝐸)
2522, 24jca 514 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇𝑂𝐸))
26 eleq1 2902 . . . . . . . . . . 11 (𝑓 = (𝑠𝐹) → (𝑓𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
27 eleq1 2902 . . . . . . . . . . 11 (𝑡 = 𝑂 → (𝑡𝐸𝑂𝐸))
2826, 27bi2anan9 637 . . . . . . . . . 10 ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → ((𝑓𝑇𝑡𝐸) ↔ ((𝑠𝐹) ∈ 𝑇𝑂𝐸)))
2925, 28syl5ibrcom 249 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3029rexlimdva 3286 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3130pm4.71rd 565 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
32 velsn 4585 . . . . . . . . 9 (𝑡 ∈ {𝑂} ↔ 𝑡 = 𝑂)
3332anbi2i 624 . . . . . . . 8 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
34 r19.41v 3349 . . . . . . . 8 (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
3533, 34bitr4i 280 . . . . . . 7 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
36 df-3an 1085 . . . . . . 7 ((𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
3731, 35, 363bitr4g 316 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3819, 37bitrd 281 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3915, 38syl5bb 285 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
4014, 39opabbi2dv 5722 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
4113, 40eqtrd 2858 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
42 eqeq1 2827 . . . . 5 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩))
43 vex 3499 . . . . . 6 𝑓 ∈ V
44 vex 3499 . . . . . 6 𝑡 ∈ V
4543, 44opth 5370 . . . . 5 (⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
4642, 45syl6bb 289 . . . 4 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4746rexbidv 3299 . . 3 (𝑔 = ⟨𝑓, 𝑡⟩ → (∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4847rabxp 5602 . 2 {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩} = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))}
4941, 48syl6eqr 2876 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  {csn 4569  cop 4575   class class class wbr 5068  {copab 5130  cmpt 5148   I cid 5461   × cxp 5555  cres 5559  cfv 6357  Basecbs 16485  lecple 16574  HLchlt 36488  LHypclh 37122  LTrncltrn 37239  trLctrl 37296  TEndoctendo 37890  DIsoAcdia 38166  DIsoBcdib 38276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-undef 7941  df-map 8410  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tendo 37893  df-disoa 38167  df-dib 38277
This theorem is referenced by:  dib1dim2  38306
  Copyright terms: Public domain W3C validator