Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim2 Structured version   Visualization version   GIF version

Theorem dib1dim2 36951
Description: Two expressions for a 1-dimensional subspace of vector space H (when 𝐹 is a nonzero vector i.e. non-identity translation). (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
dib1dim2.b 𝐵 = (Base‘𝐾)
dib1dim2.h 𝐻 = (LHyp‘𝐾)
dib1dim2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dib1dim2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dib1dim2.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dib1dim2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dib1dim2.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
dib1dim2.n 𝑁 = (LSpan‘𝑈)
Assertion
Ref Expression
dib1dim2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = (𝑁‘{⟨𝐹, 𝑂⟩}))
Distinct variable groups:   𝐵,   ,𝐾   𝑇,   ,𝑊
Allowed substitution hints:   𝑅()   𝑈()   𝐹()   𝐻()   𝐼()   𝑁()   𝑂()

Proof of Theorem dib1dim2
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3051 . . 3 {𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩} = {𝑢 ∣ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩)}
2 dib1dim2.b . . . 4 𝐵 = (Base‘𝐾)
3 dib1dim2.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dib1dim2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dib1dim2.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
6 eqid 2752 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
7 dib1dim2.o . . . 4 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
8 dib1dim2.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
92, 3, 4, 5, 6, 7, 8dib1dim 36948 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩})
10 dib1dim2.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 eqid 2752 . . . . . . . 8 (Scalar‘𝑈) = (Scalar‘𝑈)
12 eqid 2752 . . . . . . . 8 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
133, 6, 10, 11, 12dvhbase 36866 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
1413adantr 472 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
1514rexeqdv 3276 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩) ↔ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩)))
16 simpll 807 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simpr 479 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑣 ∈ ((TEndo‘𝐾)‘𝑊))
18 simplr 809 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝐹𝑇)
192, 3, 4, 6, 7tendo0cl 36572 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
2019ad2antrr 764 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
21 eqid 2752 . . . . . . . . . 10 ( ·𝑠𝑈) = ( ·𝑠𝑈)
223, 4, 6, 10, 21dvhopvsca 36885 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑣 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩) = ⟨(𝑣𝐹), (𝑣𝑂)⟩)
2316, 17, 18, 20, 22syl13anc 1475 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩) = ⟨(𝑣𝐹), (𝑣𝑂)⟩)
242, 3, 4, 6, 7tendo0mulr 36609 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣𝑂) = 𝑂)
2524adantlr 753 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣𝑂) = 𝑂)
2625opeq2d 4552 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑣𝐹), (𝑣𝑂)⟩ = ⟨(𝑣𝐹), 𝑂⟩)
2723, 26eqtrd 2786 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩) = ⟨(𝑣𝐹), 𝑂⟩)
2827eqeq2d 2762 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩) ↔ 𝑢 = ⟨(𝑣𝐹), 𝑂⟩))
2928rexbidva 3179 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩) ↔ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩))
303, 4, 6tendocl 36549 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇) → (𝑣𝐹) ∈ 𝑇)
31303expa 1111 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ 𝐹𝑇) → (𝑣𝐹) ∈ 𝑇)
3231an32s 881 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑣𝐹) ∈ 𝑇)
33 opelxpi 5297 . . . . . . . . 9 (((𝑣𝐹) ∈ 𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑣𝐹), 𝑂⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
3432, 20, 33syl2anc 696 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑣𝐹), 𝑂⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
35 eleq1a 2826 . . . . . . . 8 (⟨(𝑣𝐹), 𝑂⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (𝑢 = ⟨(𝑣𝐹), 𝑂⟩ → 𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
3634, 35syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑣 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑢 = ⟨(𝑣𝐹), 𝑂⟩ → 𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
3736rexlimdva 3161 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩ → 𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
3837pm4.71rd 670 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩ ↔ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩)))
3915, 29, 383bitrd 294 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩) ↔ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩)))
4039abbidv 2871 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩)} = {𝑢 ∣ (𝑢 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑣 ∈ ((TEndo‘𝐾)‘𝑊)𝑢 = ⟨(𝑣𝐹), 𝑂⟩)})
411, 9, 403eqtr4a 2812 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩)})
42 simpl 474 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
433, 10, 42dvhlmod 36893 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑈 ∈ LMod)
44 simpr 479 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
4519adantr 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))
46 eqid 2752 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
473, 4, 6, 10, 46dvhelvbasei 36871 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐹, 𝑂⟩ ∈ (Base‘𝑈))
4842, 44, 45, 47syl12anc 1471 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ⟨𝐹, 𝑂⟩ ∈ (Base‘𝑈))
49 dib1dim2.n . . . 4 𝑁 = (LSpan‘𝑈)
5011, 12, 46, 21, 49lspsn 19196 . . 3 ((𝑈 ∈ LMod ∧ ⟨𝐹, 𝑂⟩ ∈ (Base‘𝑈)) → (𝑁‘{⟨𝐹, 𝑂⟩}) = {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩)})
5143, 48, 50syl2anc 696 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑁‘{⟨𝐹, 𝑂⟩}) = {𝑢 ∣ ∃𝑣 ∈ (Base‘(Scalar‘𝑈))𝑢 = (𝑣( ·𝑠𝑈)⟨𝐹, 𝑂⟩)})
5241, 51eqtr4d 2789 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = (𝑁‘{⟨𝐹, 𝑂⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  {cab 2738  wrex 3043  {crab 3046  {csn 4313  cop 4319  cmpt 4873   I cid 5165   × cxp 5256  cres 5260  ccom 5262  cfv 6041  (class class class)co 6805  Basecbs 16051  Scalarcsca 16138   ·𝑠 cvsca 16139  LModclmod 19057  LSpanclspn 19165  HLchlt 35132  LHypclh 35765  LTrncltrn 35882  trLctrl 35940  TEndoctendo 36534  DVecHcdvh 36861  DIsoBcdib 36921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-riotaBAD 34734
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-undef 7560  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-sca 16151  df-vsca 16152  df-0g 16296  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-clat 17301  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mgp 18682  df-ur 18694  df-ring 18741  df-oppr 18815  df-dvdsr 18833  df-unit 18834  df-invr 18864  df-dvr 18875  df-drng 18943  df-lmod 19059  df-lss 19127  df-lsp 19166  df-lvec 19297  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-llines 35279  df-lplanes 35280  df-lvols 35281  df-lines 35282  df-psubsp 35284  df-pmap 35285  df-padd 35577  df-lhyp 35769  df-laut 35770  df-ldil 35885  df-ltrn 35886  df-trl 35941  df-tendo 36537  df-edring 36539  df-disoa 36812  df-dvech 36862  df-dib 36922
This theorem is referenced by:  cdlemn2a  36979  dih1dimb  37023  dih1dimatlem  37112
  Copyright terms: Public domain W3C validator