![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibelval1st2N | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 13-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibelval1st2.b | ⊢ 𝐵 = (Base‘𝐾) |
dibelval1st2.l | ⊢ ≤ = (le‘𝐾) |
dibelval1st2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibelval1st2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibelval1st2.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dibelval1st2.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibelval1st2N | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibelval1st2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibelval1st2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | dibelval1st2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | eqid 2758 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
5 | dibelval1st2.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | dibelval1st 36938 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
7 | dibelval1st2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | dibelval1st2.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 7, 8, 4 | diatrl 36833 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (1st ‘𝑌) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
10 | 6, 9 | syld3an3 1516 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑋)) → (𝑅‘(1st ‘𝑌)) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 class class class wbr 4802 ‘cfv 6047 1st c1st 7329 Basecbs 16057 lecple 16148 LHypclh 35771 LTrncltrn 35888 trLctrl 35946 DIsoAcdia 36817 DIsoBcdib 36927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-1st 7331 df-disoa 36818 df-dib 36928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |