Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibf11N Structured version   Visualization version   GIF version

Theorem dibf11N 38299
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibf11N ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)

Proof of Theorem dibf11N
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2823 . . . 4 (le‘𝐾) = (le‘𝐾)
3 dibcl.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibcl.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
51, 2, 3, 4dibfnN 38294 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
6 fnfun 6455 . . . 4 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → Fun 𝐼)
7 funfn 6387 . . . 4 (Fun 𝐼𝐼 Fn dom 𝐼)
86, 7sylib 220 . . 3 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → 𝐼 Fn dom 𝐼)
95, 8syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn dom 𝐼)
10 eqidd 2824 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = ran 𝐼)
111, 2, 3, 4dibeldmN 38296 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
121, 2, 3, 4dibeldmN 38296 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
1311, 12anbi12d 632 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) ↔ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))))
141, 2, 3, 4dib11N 38298 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) ↔ 𝑥 = 𝑦))
1514biimpd 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
16153expib 1118 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1713, 16sylbid 242 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1817ralrimivv 3192 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
19 dff1o6 7034 . 2 (𝐼:dom 𝐼1-1-onto→ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
209, 10, 18, 19syl3anbrc 1339 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  {crab 3144   class class class wbr 5068  dom cdm 5557  ran crn 5558  Fun wfun 6351   Fn wfn 6352  1-1-ontowf1o 6356  cfv 6357  Basecbs 16485  lecple 16574  HLchlt 36488  LHypclh 37122  DIsoBcdib 38276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-undef 7941  df-map 8410  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-disoa 38167  df-dib 38277
This theorem is referenced by:  dibintclN  38305
  Copyright terms: Public domain W3C validator