![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibfnN | Structured version Visualization version GIF version |
Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibfn.b | ⊢ 𝐵 = (Base‘𝐾) |
dibfn.l | ⊢ ≤ = (le‘𝐾) |
dibfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibfn.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibfnN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibfn.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2651 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
3 | dibfn.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | dibfna 36760 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊)) |
5 | dibfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | dibfn.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
7 | 5, 6, 1, 2 | diadm 36641 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → dom ((DIsoA‘𝐾)‘𝑊) = {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
8 | 7 | fneq2d 6020 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊) ↔ 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊})) |
9 | 4, 8 | mpbid 222 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ 𝐵 ∣ 𝑥 ≤ 𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 class class class wbr 4685 dom cdm 5143 Fn wfn 5921 ‘cfv 5926 Basecbs 15904 lecple 15995 LHypclh 35588 DIsoAcdia 36634 DIsoBcdib 36744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-disoa 36635 df-dib 36745 |
This theorem is referenced by: dibdmN 36763 dibf11N 36767 |
Copyright terms: Public domain | W3C validator |