Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelvalN Structured version   Visualization version   GIF version

Theorem dibopelvalN 38273
Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibopelvalN (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊   𝑇,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑆(𝑓)   𝐹(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibopelvalN
StepHypRef Expression
1 dibval.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval.h . . . 4 𝐻 = (LHyp‘𝐾)
3 dibval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dibval.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 dibval.j . . . 4 𝐽 = ((DIsoA‘𝐾)‘𝑊)
6 dibval.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6dibval 38272 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
87eleq2d 2898 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 })))
9 opelxp 5586 . . 3 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }))
103fvexi 6679 . . . . . . 7 𝑇 ∈ V
1110mptex 6980 . . . . . 6 (𝑓𝑇 ↦ ( I ↾ 𝐵)) ∈ V
124, 11eqeltri 2909 . . . . 5 0 ∈ V
1312elsn2 4598 . . . 4 (𝑆 ∈ { 0 } ↔ 𝑆 = 0 )
1413anbi2i 624 . . 3 ((𝐹 ∈ (𝐽𝑋) ∧ 𝑆 ∈ { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
159, 14bitri 277 . 2 (⟨𝐹, 𝑆⟩ ∈ ((𝐽𝑋) × { 0 }) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 ))
168, 15syl6bb 289 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (𝐽𝑋) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3495  {csn 4561  cop 4567  cmpt 5139   I cid 5454   × cxp 5548  dom cdm 5550  cres 5552  cfv 6350  Basecbs 16477  LHypclh 37114  LTrncltrn 37231  DIsoAcdia 38158  DIsoBcdib 38268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-dib 38269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator