Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval Structured version   Visualization version   GIF version

Theorem dicval 38306
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicval (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑇,𝑔   𝑓,𝑊,𝑔,𝑠   𝑓,𝐸,𝑠   𝑃,𝑓   𝑄,𝑓,𝑔,𝑠   𝑇,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐻(𝑓,𝑔,𝑠)   𝐼(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem dicval
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . . 5 = (le‘𝐾)
2 dicval.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . . 5 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . . 5 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicfval 38305 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
98adantr 483 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
109fveq1d 6667 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄))
11 simpr 487 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
12 breq1 5062 . . . . . 6 (𝑟 = 𝑄 → (𝑟 𝑊𝑄 𝑊))
1312notbid 320 . . . . 5 (𝑟 = 𝑄 → (¬ 𝑟 𝑊 ↔ ¬ 𝑄 𝑊))
1413elrab 3680 . . . 4 (𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↔ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
1511, 14sylibr 236 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊})
16 eqeq2 2833 . . . . . . . . 9 (𝑞 = 𝑄 → ((𝑔𝑃) = 𝑞 ↔ (𝑔𝑃) = 𝑄))
1716riotabidv 7110 . . . . . . . 8 (𝑞 = 𝑄 → (𝑔𝑇 (𝑔𝑃) = 𝑞) = (𝑔𝑇 (𝑔𝑃) = 𝑄))
1817fveq2d 6669 . . . . . . 7 (𝑞 = 𝑄 → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1918eqeq2d 2832 . . . . . 6 (𝑞 = 𝑄 → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
2019anbi1d 631 . . . . 5 (𝑞 = 𝑄 → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸) ↔ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)))
2120opabbidv 5125 . . . 4 (𝑞 = 𝑄 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
22 eqid 2821 . . . 4 (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})
236fvexi 6679 . . . . . . . . . 10 𝐸 ∈ V
2423uniex 7461 . . . . . . . . 9 𝐸 ∈ V
2524rnex 7611 . . . . . . . 8 ran 𝐸 ∈ V
2625uniex 7461 . . . . . . 7 ran 𝐸 ∈ V
2726pwex 5274 . . . . . 6 𝒫 ran 𝐸 ∈ V
2827, 23xpex 7470 . . . . 5 (𝒫 ran 𝐸 × 𝐸) ∈ V
29 simpl 485 . . . . . . . . 9 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
30 fvssunirn 6694 . . . . . . . . . . 11 (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝑠
31 elssuni 4861 . . . . . . . . . . . . 13 (𝑠𝐸𝑠 𝐸)
3231adantl 484 . . . . . . . . . . . 12 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑠 𝐸)
33 rnss 5804 . . . . . . . . . . . 12 (𝑠 𝐸 → ran 𝑠 ⊆ ran 𝐸)
34 uniss 4853 . . . . . . . . . . . 12 (ran 𝑠 ⊆ ran 𝐸 ran 𝑠 ran 𝐸)
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → ran 𝑠 ran 𝐸)
3630, 35sstrid 3978 . . . . . . . . . 10 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝐸)
3726elpw2 5241 . . . . . . . . . 10 ((𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∈ 𝒫 ran 𝐸 ↔ (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ⊆ ran 𝐸)
3836, 37sylibr 236 . . . . . . . . 9 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∈ 𝒫 ran 𝐸)
3929, 38eqeltrd 2913 . . . . . . . 8 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑓 ∈ 𝒫 ran 𝐸)
40 simpr 487 . . . . . . . 8 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → 𝑠𝐸)
4139, 40jca 514 . . . . . . 7 ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) → (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸))
4241ssopab2i 5430 . . . . . 6 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ⊆ {⟨𝑓, 𝑠⟩ ∣ (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸)}
43 df-xp 5556 . . . . . 6 (𝒫 ran 𝐸 × 𝐸) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸)}
4442, 43sseqtrri 4004 . . . . 5 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ⊆ (𝒫 ran 𝐸 × 𝐸)
4528, 44ssexi 5219 . . . 4 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ∈ V
4621, 22, 45fvmpt 6763 . . 3 (𝑄 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} → ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
4715, 46syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})‘𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
4810, 47eqtrd 2856 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  wss 3936  𝒫 cpw 4539   cuni 4832   class class class wbr 5059  {copab 5121  cmpt 5139   × cxp 5548  ran crn 5551  cfv 6350  crio 7107  lecple 16566  occoc 16567  Atomscatm 36393  LHypclh 37114  LTrncltrn 37231  TEndoctendo 37882  DIsoCcdic 38302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-dic 38303
This theorem is referenced by:  dicopelval  38307  dicelvalN  38308  dicval2  38309  dicfnN  38313  dicvalrelN  38315  dicssdvh  38316  dicelval1sta  38317  dihpN  38466
  Copyright terms: Public domain W3C validator