Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelcarsg Structured version   Visualization version   GIF version

Theorem difelcarsg 29505
Description: The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
difelcarsg (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))

Proof of Theorem difelcarsg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 difssd 3699 . . 3 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2 indif2 3828 . . . . . . . 8 (𝑒 ∩ (𝑂𝐴)) = ((𝑒𝑂) ∖ 𝐴)
3 elpwi 4116 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝑂𝑒𝑂)
43adantl 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒𝑂)
5 df-ss 3553 . . . . . . . . . 10 (𝑒𝑂 ↔ (𝑒𝑂) = 𝑒)
64, 5sylib 206 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = 𝑒)
76difeq1d 3688 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∖ 𝐴) = (𝑒𝐴))
82, 7syl5eq 2655 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝑂𝐴)) = (𝑒𝐴))
98fveq2d 6092 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
10 difdif2 3842 . . . . . . . 8 (𝑒 ∖ (𝑂𝐴)) = ((𝑒𝑂) ∪ (𝑒𝐴))
11 ssdif0 3895 . . . . . . . . . . 11 (𝑒𝑂 ↔ (𝑒𝑂) = ∅)
124, 11sylib 206 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝑂) = ∅)
1312uneq1d 3727 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (∅ ∪ (𝑒𝐴)))
14 uncom 3718 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (∅ ∪ (𝑒𝐴))
15 un0 3918 . . . . . . . . . 10 ((𝑒𝐴) ∪ ∅) = (𝑒𝐴)
1614, 15eqtr3i 2633 . . . . . . . . 9 (∅ ∪ (𝑒𝐴)) = (𝑒𝐴)
1713, 16syl6eq 2659 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝑂) ∪ (𝑒𝐴)) = (𝑒𝐴))
1810, 17syl5eq 2655 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝑂𝐴)) = (𝑒𝐴))
1918fveq2d 6092 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝑂𝐴))) = (𝑀‘(𝑒𝐴)))
209, 19oveq12d 6545 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
21 iccssxr 12083 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
22 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
2322adantr 479 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
24 simpr 475 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
2524elpwdifcl 28548 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2623, 25ffvelrnd 6253 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
2721, 26sseldi 3565 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2824elpwincl1 28547 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2923, 28ffvelrnd 6253 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
3021, 29sseldi 3565 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
31 xaddcom 11903 . . . . . 6 (((𝑀‘(𝑒𝐴)) ∈ ℝ* ∧ (𝑀‘(𝑒𝐴)) ∈ ℝ*) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
3227, 30, 31syl2anc 690 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
33 difelcarsg.1 . . . . . . . 8 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
34 carsgval.1 . . . . . . . . 9 (𝜑𝑂𝑉)
3534, 22elcarsg 29500 . . . . . . . 8 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
3633, 35mpbid 220 . . . . . . 7 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
3736simprd 477 . . . . . 6 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3837r19.21bi 2915 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
3920, 32, 383eqtrd 2647 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
4039ralrimiva 2948 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))
411, 40jca 552 . 2 (𝜑 → ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒)))
4234, 22elcarsg 29500 . 2 (𝜑 → ((𝑂𝐴) ∈ (toCaraSiga‘𝑀) ↔ ((𝑂𝐴) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝑂𝐴))) +𝑒 (𝑀‘(𝑒 ∖ (𝑂𝐴)))) = (𝑀𝑒))))
4341, 42mpbird 245 1 (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873  𝒫 cpw 4107  wf 5786  cfv 5790  (class class class)co 6527  0cc0 9792  +∞cpnf 9927  *cxr 9929   +𝑒 cxad 11776  [,]cicc 12005  toCaraSigaccarsg 29496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-xadd 11779  df-icc 12009  df-carsg 29497
This theorem is referenced by:  unelcarsg  29507  difelcarsg2  29508  fiunelcarsg  29511  carsgsiga  29517
  Copyright terms: Public domain W3C validator