MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difex2 Structured version   Visualization version   GIF version

Theorem difex2 6919
Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
difex2 (𝐵𝐶 → (𝐴 ∈ V ↔ (𝐴𝐵) ∈ V))

Proof of Theorem difex2
StepHypRef Expression
1 difexg 4773 . 2 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
2 ssun2 3760 . . . . 5 𝐴 ⊆ (𝐵𝐴)
3 uncom 3740 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐵 ∪ (𝐴𝐵))
4 undif2 4021 . . . . . 6 (𝐵 ∪ (𝐴𝐵)) = (𝐵𝐴)
53, 4eqtr2i 2649 . . . . 5 (𝐵𝐴) = ((𝐴𝐵) ∪ 𝐵)
62, 5sseqtri 3621 . . . 4 𝐴 ⊆ ((𝐴𝐵) ∪ 𝐵)
7 unexg 6913 . . . 4 (((𝐴𝐵) ∈ V ∧ 𝐵𝐶) → ((𝐴𝐵) ∪ 𝐵) ∈ V)
8 ssexg 4769 . . . 4 ((𝐴 ⊆ ((𝐴𝐵) ∪ 𝐵) ∧ ((𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
96, 7, 8sylancr 694 . . 3 (((𝐴𝐵) ∈ V ∧ 𝐵𝐶) → 𝐴 ∈ V)
109expcom 451 . 2 (𝐵𝐶 → ((𝐴𝐵) ∈ V → 𝐴 ∈ V))
111, 10impbid2 216 1 (𝐵𝐶 → (𝐴 ∈ V ↔ (𝐴𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1992  Vcvv 3191  cdif 3557  cun 3558  wss 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-sn 4154  df-pr 4156  df-uni 4408
This theorem is referenced by:  elpwun  6925
  Copyright terms: Public domain W3C validator