MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difexOLD Structured version   Visualization version   GIF version

Theorem difexOLD 4801
Description: Obsolete version of difexi 4800 as of 26-Mar-2021. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
difexOLD.1 𝐴𝑉
Assertion
Ref Expression
difexOLD (𝐴𝐵) ∈ V

Proof of Theorem difexOLD
StepHypRef Expression
1 difexOLD.1 . 2 𝐴𝑉
2 difexg 4799 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
31, 2ax-mp 5 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1988  Vcvv 3195  cdif 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-v 3197  df-dif 3570  df-in 3574  df-ss 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator