![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexi | Structured version Visualization version GIF version |
Description: Existence of a difference, inference version of difexg 4841. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
difexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
difexi | ⊢ (𝐴 ∖ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | difexg 4841 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 |
This theorem is referenced by: marypha1lem 8380 inf3lem3 8565 kmlem11 9020 kmlem12 9021 opfi1uzind 13321 uhgrspan1lem1 26237 upgrres1lem1 26246 nbgrval 26274 nbfusgrlevtxm1 26323 vtxdginducedm1lem1 26491 vtxdginducedm1fi 26496 finsumvtxdg2ssteplem4 26500 setindtr 37908 ssdifcl 38193 clsk3nimkb 38655 meaiuninclem 41015 meaiininclem 41021 |
Copyright terms: Public domain | W3C validator |