MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difindir Structured version   Visualization version   GIF version

Theorem difindir 3858
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindir ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem difindir
StepHypRef Expression
1 inindir 3809 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∩ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 3844 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 3844 . . 3 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
4 invdif 3844 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
53, 4ineq12i 3790 . 2 ((𝐴 ∩ (V ∖ 𝐶)) ∩ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐶) ∩ (𝐵𝐶))
61, 2, 53eqtr3i 2651 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  Vcvv 3186  cdif 3552  cin 3554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-in 3562
This theorem is referenced by:  ablfac1eulem  18392  ballotlemgun  30367
  Copyright terms: Public domain W3C validator