Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmodm1lt Structured version   Visualization version   GIF version

Theorem difmodm1lt 44589
Description: The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.)
Assertion
Ref Expression
difmodm1lt ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))

Proof of Theorem difmodm1lt
StepHypRef Expression
1 simpl 485 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) = 1)
2 zre 11988 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
323ad2ant1 1129 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝐴 ∈ ℝ)
4 nnre 11648 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
543ad2ant2 1130 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
6 1lt2 11811 . . . . . . . . . . 11 1 < 2
7 1red 10645 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
8 2re 11714 . . . . . . . . . . . . . 14 2 ∈ ℝ
98a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℝ)
107, 9, 43jca 1124 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
11 lttr 10720 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
1210, 11syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 < 2 ∧ 2 < 𝑁) → 1 < 𝑁))
136, 12mpani 694 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁))
1413a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (2 < 𝑁 → 1 < 𝑁)))
15143imp 1107 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < 𝑁)
163, 5, 153jca 1124 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
1716adantl 484 . . . . . 6 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁))
18 m1mod0mod1 43536 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
1917, 18syl 17 . . . . 5 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
201, 19mpbird 259 . . . 4 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) = 0)
211, 20oveq12d 7177 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) = (1 − 0))
22 df-2 11703 . . . . . . . . . 10 2 = (1 + 1)
2322breq1i 5076 . . . . . . . . 9 (2 < 𝑁 ↔ (1 + 1) < 𝑁)
2423biimpi 218 . . . . . . . 8 (2 < 𝑁 → (1 + 1) < 𝑁)
2524adantl 484 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 + 1) < 𝑁)
26 1red 10645 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 ∈ ℝ)
274adantr 483 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
2826, 26, 27ltaddsub2d 11244 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((1 + 1) < 𝑁 ↔ 1 < (𝑁 − 1)))
2925, 28mpbid 234 . . . . . 6 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → 1 < (𝑁 − 1))
30 1m0e1 11761 . . . . . . 7 (1 − 0) = 1
3130breq1i 5076 . . . . . 6 ((1 − 0) < (𝑁 − 1) ↔ 1 < (𝑁 − 1))
3229, 31sylibr 236 . . . . 5 ((𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
33323adant1 1126 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (1 − 0) < (𝑁 − 1))
3433adantl 484 . . 3 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (1 − 0) < (𝑁 − 1))
3521, 34eqbrtrd 5091 . 2 (((𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
36 zmodfz 13264 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
37363adant3 1128 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)))
38 elfzle2 12914 . . . . . 6 ((𝐴 mod 𝑁) ∈ (0...(𝑁 − 1)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
3937, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
4039adantl 484 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (𝐴 mod 𝑁) ≤ (𝑁 − 1))
41 nnrp 12403 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
42413ad2ant2 1130 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ+)
433, 42modcld 13246 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
44 peano2rem 10956 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
454, 44syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
46453ad2ant2 1130 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝑁 − 1) ∈ ℝ)
47 peano2zm 12028 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
4847zred 12090 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
49483ad2ant1 1129 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (𝐴 − 1) ∈ ℝ)
5049, 42modcld 13246 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) mod 𝑁) ∈ ℝ)
5143, 46, 503jca 1124 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
5251adantl 484 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
53 lesub1 11137 . . . . 5 (((𝐴 mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5452, 53syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) ≤ (𝑁 − 1) ↔ ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁))))
5540, 54mpbid 234 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)))
5649, 42jca 514 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
5756adantl 484 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
58 modge0 13250 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 0 ≤ ((𝐴 − 1) mod 𝑁))
5957, 58syl 17 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 ≤ ((𝐴 − 1) mod 𝑁))
6016, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
6160bicomd 225 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) = 1 ↔ ((𝐴 − 1) mod 𝑁) = 0))
6261notbid 320 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (¬ (𝐴 mod 𝑁) = 1 ↔ ¬ ((𝐴 − 1) mod 𝑁) = 0))
6362biimpac 481 . . . . . . 7 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ¬ ((𝐴 − 1) mod 𝑁) = 0)
6463neqned 3026 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 0)
6559, 64jca 514 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0))
66 0red 10647 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → 0 ∈ ℝ)
6766, 50jca 514 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
6867adantl 484 . . . . . 6 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ))
69 ltlen 10744 . . . . . 6 ((0 ∈ ℝ ∧ ((𝐴 − 1) mod 𝑁) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7068, 69syl 17 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ (0 ≤ ((𝐴 − 1) mod 𝑁) ∧ ((𝐴 − 1) mod 𝑁) ≠ 0)))
7165, 70mpbird 259 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → 0 < ((𝐴 − 1) mod 𝑁))
7250, 46jca 514 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
7372adantl 484 . . . . 5 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
74 ltsubpos 11135 . . . . 5 ((((𝐴 − 1) mod 𝑁) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7573, 74syl 17 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (0 < ((𝐴 − 1) mod 𝑁) ↔ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
7671, 75mpbid 234 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
7743, 50resubcld 11071 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7846, 50resubcld 11071 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ)
7977, 78, 463jca 1124 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
8079adantl 484 . . . 4 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → (((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ))
81 lelttr 10734 . . . 4 ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8280, 81syl 17 . . 3 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) ≤ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) ∧ ((𝑁 − 1) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)))
8355, 76, 82mp2and 697 . 2 ((¬ (𝐴 mod 𝑁) = 1 ∧ (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁)) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
8435, 83pm2.61ian 810 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  (class class class)co 7159  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cle 10679  cmin 10873  cn 11641  2c2 11695  cz 11984  +crp 12392  ...cfz 12895   mod cmo 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fl 13165  df-mod 13241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator