MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsn2 Structured version   Visualization version   GIF version

Theorem difprsn2 4307
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 4244 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21difeq1i 3708 . 2 ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵})
3 necom 2843 . . 3 (𝐴𝐵𝐵𝐴)
4 difprsn1 4306 . . 3 (𝐵𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
53, 4sylbi 207 . 2 (𝐴𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
62, 5syl5eq 2667 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wne 2790  cdif 3557  {csn 4155  {cpr 4157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-sn 4156  df-pr 4158
This theorem is referenced by:  f12dfv  6494  pmtrprfval  17847  nbgr2vtx1edg  26167  nbuhgr2vtx1edgb  26169  nfrgr2v  27034  ldepsnlinc  41615
  Copyright terms: Public domain W3C validator