MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsnss Structured version   Visualization version   GIF version

Theorem difprsnss 4298
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difprsnss ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵}

Proof of Theorem difprsnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3189 . . . . 5 𝑥 ∈ V
21elpr 4169 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
3 velsn 4164 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
43notbii 310 . . . 4 𝑥 ∈ {𝐴} ↔ ¬ 𝑥 = 𝐴)
5 biorf 420 . . . . 5 𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ (𝑥 = 𝐴𝑥 = 𝐵)))
65biimparc 504 . . . 4 (((𝑥 = 𝐴𝑥 = 𝐵) ∧ ¬ 𝑥 = 𝐴) → 𝑥 = 𝐵)
72, 4, 6syl2anb 496 . . 3 ((𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐵)
8 eldif 3565 . . 3 (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ↔ (𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}))
9 velsn 4164 . . 3 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
107, 8, 93imtr4i 281 . 2 (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) → 𝑥 ∈ {𝐵})
1110ssriv 3587 1 ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1480  wcel 1987  cdif 3552  wss 3555  {csn 4148  {cpr 4150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-sn 4149  df-pr 4151
This theorem is referenced by:  en2other2  8776  pmtrprfv  17794  itg11  23364
  Copyright terms: Public domain W3C validator