MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difreicc Structured version   Visualization version   GIF version

Theorem difreicc 12858
Description: The class difference of and a closed interval. (Contributed by FL, 18-Jun-2007.)
Assertion
Ref Expression
difreicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))

Proof of Theorem difreicc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3943 . . 3 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
2 rexr 10675 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3 rexr 10675 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 elicc1 12770 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
52, 3, 4syl2an 595 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
65adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
76notbid 319 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8 3anass 1087 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
98notbii 321 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
10 ianor 975 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)))
11 rexr 10675 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1211pm2.24d 154 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
1312adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
14 ianor 975 . . . . . . . . . . 11 (¬ (𝐴𝑥𝑥𝐵) ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
1511ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
16 mnflt 12506 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → -∞ < 𝑥)
1716ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → -∞ < 𝑥)
18 simpr 485 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
19 simpll 763 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 ltnle 10708 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2120bicomd 224 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2218, 19, 21syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2322biimpa 477 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 < 𝐴)
24 mnfxr 10686 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
252ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
26 elioo1 12766 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2724, 25, 26sylancr 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2815, 17, 23, 27mpbir3and 1334 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (-∞(,)𝐴))
2928ex 413 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 ∈ (-∞(,)𝐴)))
30 ltnle 10708 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3130adantll 710 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3211ad2antlr 723 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
33 simpr 485 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
34 ltpnf 12503 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 < +∞)
3534ad2antlr 723 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 < +∞)
363ad3antlr 727 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
37 pnfxr 10683 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
38 elioo1 12766 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
3936, 37, 38sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
4032, 33, 35, 39mpbir3and 1334 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ (𝐵(,)+∞))
4140ex 413 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥𝑥 ∈ (𝐵(,)+∞)))
4231, 41sylbird 261 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝐵𝑥 ∈ (𝐵(,)+∞)))
4329, 42orim12d 958 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4414, 43syl5bi 243 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4513, 44jaod 853 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4610, 45syl5bi 243 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
479, 46syl5bi 243 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
487, 47sylbid 241 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4948expimpd 454 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
50 elun 4122 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)))
5149, 50syl6ibr 253 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
52 ioossre 12786 . . . . . . . . 9 (-∞(,)𝐴) ⊆ ℝ
53 ioossre 12786 . . . . . . . . 9 (𝐵(,)+∞) ⊆ ℝ
5452, 53unssi 4158 . . . . . . . 8 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ⊆ ℝ
5554sseli 3960 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → 𝑥 ∈ ℝ)
5655adantl 482 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑥 ∈ ℝ)
57 elioo2 12767 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5824, 2, 57sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5958adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
6020biimpd 230 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴𝑥))
6160ex 413 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 (-∞ < 𝑥 → (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6362com13 88 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6463adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
65643impd 1340 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴) → ¬ 𝐴𝑥))
6659, 65sylbid 241 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) → ¬ 𝐴𝑥))
673adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
6867, 37, 38sylancl 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
69 xrltnle 10696 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
7069biimpd 230 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 → ¬ 𝑥𝐵))
7170ex 413 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → ¬ 𝑥𝐵)))
7271a1ddd 80 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
733, 72syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
7473adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
75743impd 1340 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞) → ¬ 𝑥𝐵))
7668, 75sylbid 241 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) → ¬ 𝑥𝐵))
7766, 76orim12d 958 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
7850, 77syl5bi 243 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
7978imp 407 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
8079, 14sylibr 235 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝐴𝑥𝑥𝐵))
8180intnand 489 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
8281, 8sylnibr 330 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵))
832, 3anim12i 612 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
8483adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
854notbid 319 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8684, 85syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8782, 86mpbird 258 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
8856, 87jca 512 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
8988ex 413 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵))))
9051, 89impbid 213 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
911, 90syl5bb 284 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
9291eqrdv 2816 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  cdif 3930  cun 3931   class class class wbr 5057  (class class class)co 7145  cr 10524  +∞cpnf 10660  -∞cmnf 10661  *cxr 10662   < clt 10663  cle 10664  (,)cioo 12726  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-ioo 12730  df-icc 12733
This theorem is referenced by:  icccld  23302  iccmbl  24094  mbfimaicc  24159  icccncfext  42046
  Copyright terms: Public domain W3C validator