MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnen Structured version   Visualization version   GIF version

Theorem difsnen 8587
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
difsnen ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))

Proof of Theorem difsnen
StepHypRef Expression
1 difexg 5222 . . . . . 6 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ∈ V)
2 enrefg 8529 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
31, 2syl 17 . . . . 5 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
433ad2ant1 1125 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
5 sneq 4567 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = {𝐵})
65difeq2d 4096 . . . . 5 (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵}))
76breq2d 5069 . . . 4 (𝐴 = 𝐵 → ((𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}) ↔ (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
84, 7syl5ibcom 246 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
98imp 407 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
10 simpl1 1183 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝑋𝑉)
11 difexg 5222 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V)
12 enrefg 8529 . . . . . 6 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
1310, 1, 11, 124syl 19 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
14 dif32 4264 . . . . 5 ((𝑋 ∖ {𝐴}) ∖ {𝐵}) = ((𝑋 ∖ {𝐵}) ∖ {𝐴})
1513, 14breqtrdi 5098 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}))
16 simpl3 1185 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝑋)
17 simpl2 1184 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝑋)
18 en2sn 8581 . . . . 5 ((𝐵𝑋𝐴𝑋) → {𝐵} ≈ {𝐴})
1916, 17, 18syl2anc 584 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → {𝐵} ≈ {𝐴})
20 incom 4175 . . . . . 6 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ({𝐵} ∩ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
21 disjdif 4417 . . . . . 6 ({𝐵} ∩ ((𝑋 ∖ {𝐴}) ∖ {𝐵})) = ∅
2220, 21eqtri 2841 . . . . 5 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅
2322a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅)
24 incom 4175 . . . . . 6 (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ({𝐴} ∩ ((𝑋 ∖ {𝐵}) ∖ {𝐴}))
25 disjdif 4417 . . . . . 6 ({𝐴} ∩ ((𝑋 ∖ {𝐵}) ∖ {𝐴})) = ∅
2624, 25eqtri 2841 . . . . 5 (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅
2726a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)
28 unen 8584 . . . 4 (((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∧ {𝐵} ≈ {𝐴}) ∧ ((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅ ∧ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
2915, 19, 23, 27, 28syl22anc 834 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
30 simpr 485 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝐵)
3130necomd 3068 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝐴)
32 eldifsn 4711 . . . . 5 (𝐵 ∈ (𝑋 ∖ {𝐴}) ↔ (𝐵𝑋𝐵𝐴))
3316, 31, 32sylanbrc 583 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑋 ∖ {𝐴}))
34 difsnid 4735 . . . 4 (𝐵 ∈ (𝑋 ∖ {𝐴}) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
3533, 34syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
36 eldifsn 4711 . . . . 5 (𝐴 ∈ (𝑋 ∖ {𝐵}) ↔ (𝐴𝑋𝐴𝐵))
3717, 30, 36sylanbrc 583 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑋 ∖ {𝐵}))
38 difsnid 4735 . . . 4 (𝐴 ∈ (𝑋 ∖ {𝐵}) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
3937, 38syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
4029, 35, 393brtr3d 5088 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
419, 40pm2.61dane 3101 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  cdif 3930  cun 3931  cin 3932  c0 4288  {csn 4557   class class class wbr 5057  cen 8494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-suc 6190  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-1o 8091  df-er 8278  df-en 8498
This theorem is referenced by:  domdifsn  8588  domunsncan  8605  enfixsn  8614  infdifsn  9108  dju1dif  9586
  Copyright terms: Public domain W3C validator