MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsqpwdvds Structured version   Visualization version   GIF version

Theorem difsqpwdvds 16217
Description: If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difsqpwdvds (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))

Proof of Theorem difsqpwdvds
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 11901 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
2 nn0cn 11901 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
31, 2anim12i 614 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
433adant3 1128 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 subsq 13566 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
64, 5syl 17 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
76adantr 483 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
87eqeq2d 2832 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) ↔ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))))
9 simprl 769 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐶 ∈ ℙ)
10 nn0z 11999 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
11 nn0z 11999 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
1210, 11anim12i 614 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 zaddcl 12016 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
1412, 13syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
15143adant3 1128 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ ℤ)
16 nn0re 11900 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1716adantl 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
18 1red 10636 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 1 ∈ ℝ)
19 nn0re 11900 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2019adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
2117, 18, 20ltaddsub2d 11235 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 ↔ 1 < (𝐴𝐵)))
22 simpr 487 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
2320, 22, 183jca 1124 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ))
24 difgtsumgt 11944 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (1 < (𝐴𝐵) → 1 < (𝐴 + 𝐵)))
2621, 25sylbid 242 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐵 + 1) < 𝐴 → 1 < (𝐴 + 𝐵)))
27263impia 1113 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴 + 𝐵))
28 eluz2b1 12313 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ 1 < (𝐴 + 𝐵)))
2915, 27, 28sylanbrc 585 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∈ (ℤ‘2))
3029adantr 483 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴 + 𝐵) ∈ (ℤ‘2))
31 simprr 771 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → 𝐷 ∈ ℕ0)
329, 30, 313jca 1124 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
3332adantr 483 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
34 zsubcl 12018 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3513, 34jca 514 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
3612, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
37363adant3 1128 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
38 dvdsmul1 15625 . . . . . . . 8 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
3937, 38syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
4039ad2antrr 724 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
41 breq2 5062 . . . . . . 7 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4241adantl 484 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) ↔ (𝐴 + 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
4340, 42mpbird 259 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴 + 𝐵) ∥ (𝐶𝐷))
44 dvdsprmpweqnn 16215 . . . . 5 ((𝐶 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴 + 𝐵) ∥ (𝐶𝐷) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚)))
4533, 43, 44sylc 65 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚))
46 prmz 16013 . . . . . . . . . . 11 (𝐶 ∈ ℙ → 𝐶 ∈ ℤ)
47 iddvdsexp 15627 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
4846, 47sylan 582 . . . . . . . . . 10 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → 𝐶 ∥ (𝐶𝑚))
49 breq2 5062 . . . . . . . . . 10 ((𝐴 + 𝐵) = (𝐶𝑚) → (𝐶 ∥ (𝐴 + 𝐵) ↔ 𝐶 ∥ (𝐶𝑚)))
5048, 49syl5ibrcom 249 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ) → ((𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5150rexlimdva 3284 . . . . . . . 8 (𝐶 ∈ ℙ → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5251adantr 483 . . . . . . 7 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5352adantl 484 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5453adantr 483 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (𝐴 + 𝐵)))
5512, 34syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ ℤ)
56553adant3 1128 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ ℤ)
5721biimp3a 1465 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 1 < (𝐴𝐵))
58 eluz2b1 12313 . . . . . . . . . . 11 ((𝐴𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝐵) ∈ ℤ ∧ 1 < (𝐴𝐵)))
5956, 57, 58sylanbrc 585 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∈ (ℤ‘2))
6059adantr 483 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐴𝐵) ∈ (ℤ‘2))
619, 60, 313jca 1124 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
6261adantr 483 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0))
63 dvdsmul2 15626 . . . . . . . . . 10 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6437, 63syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
6564ad2antrr 724 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
66 breq2 5062 . . . . . . . . 9 ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6766adantl 484 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ((𝐴𝐵) ∥ (𝐶𝐷) ↔ (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵))))
6865, 67mpbird 259 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐴𝐵) ∥ (𝐶𝐷))
69 dvdsprmpweqnn 16215 . . . . . . 7 ((𝐶 ∈ ℙ ∧ (𝐴𝐵) ∈ (ℤ‘2) ∧ 𝐷 ∈ ℕ0) → ((𝐴𝐵) ∥ (𝐶𝐷) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛)))
7062, 68, 69sylc 65 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → ∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛))
71 iddvdsexp 15627 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
7246, 71sylan 582 . . . . . . . . . . . 12 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → 𝐶 ∥ (𝐶𝑛))
73 breq2 5062 . . . . . . . . . . . 12 ((𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴𝐵) ↔ 𝐶 ∥ (𝐶𝑛)))
7472, 73syl5ibrcom 249 . . . . . . . . . . 11 ((𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7574rexlimdva 3284 . . . . . . . . . 10 (𝐶 ∈ ℙ → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7675adantr 483 . . . . . . . . 9 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7776adantl 484 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7877adantr 483 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → 𝐶 ∥ (𝐴𝐵)))
7946adantr 483 . . . . . . . . . . . . 13 ((𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ ℤ)
8037, 79anim12ci 615 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
81 3anass 1091 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ (𝐶 ∈ ℤ ∧ ((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ)))
8280, 81sylibr 236 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
83 dvds2sub 15638 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8482, 83syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵))))
8513ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐴 ∈ ℂ)
8623ad2ant2 1130 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → 𝐵 ∈ ℂ)
8785, 86, 86pnncand 11030 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
8822timesd 11874 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ0 → (2 · 𝐵) = (𝐵 + 𝐵))
8988eqcomd 2827 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ0 → (𝐵 + 𝐵) = (2 · 𝐵))
90893ad2ant2 1130 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐵 + 𝐵) = (2 · 𝐵))
9187, 90eqtrd 2856 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
9291breq2d 5070 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) ↔ 𝐶 ∥ (2 · 𝐵)))
9392biimpd 231 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9493adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ ((𝐴 + 𝐵) − (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9584, 94syld 47 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶 ∥ (𝐴 + 𝐵) ∧ 𝐶 ∥ (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
9695expcomd 419 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9796adantr 483 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴𝐵) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9878, 97syld 47 . . . . . 6 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑛 ∈ ℕ (𝐴𝐵) = (𝐶𝑛) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵))))
9970, 98mpd 15 . . . . 5 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (𝐶 ∥ (𝐴 + 𝐵) → 𝐶 ∥ (2 · 𝐵)))
10054, 99syld 47 . . . 4 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → (∃𝑚 ∈ ℕ (𝐴 + 𝐵) = (𝐶𝑚) → 𝐶 ∥ (2 · 𝐵)))
10145, 100mpd 15 . . 3 ((((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) ∧ (𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵))) → 𝐶 ∥ (2 · 𝐵))
102101ex 415 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴 + 𝐵) · (𝐴𝐵)) → 𝐶 ∥ (2 · 𝐵)))
1038, 102sylbid 242 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝐵 + 1) < 𝐴) ∧ (𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0)) → ((𝐶𝐷) = ((𝐴↑2) − (𝐵↑2)) → 𝐶 ∥ (2 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  cexp 13423  cdvds 15601  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168
This theorem is referenced by:  lighneallem2  43765
  Copyright terms: Public domain W3C validator