MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundi Structured version   Visualization version   GIF version

Theorem difundi 4255
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundi (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem difundi
StepHypRef Expression
1 dfun3 4241 . . 3 (𝐵𝐶) = (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
21difeq2i 4095 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))))
3 inindi 4202 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶)))
4 dfin2 4236 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))))
5 invdif 4244 . . . 4 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
6 invdif 4244 . . . 4 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
75, 6ineq12i 4186 . . 3 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∩ (𝐴𝐶))
83, 4, 73eqtr3i 2852 . 2 (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) = ((𝐴𝐵) ∩ (𝐴𝐶))
92, 8eqtri 2844 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3494  cdif 3932  cun 3933  cin 3934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942
This theorem is referenced by:  undm  4261  uncld  21643  inmbl  24137  difuncomp  30299  clsun  33671  poimirlem8  34894  ntrclskb  40412  ntrclsk3  40413  ntrclsk13  40414
  Copyright terms: Public domain W3C validator