Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  digexp Structured version   Visualization version   GIF version

Theorem digexp 41667
Description: The 𝐾 th digit of a power to the base is either 1 or 0. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
digexp ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))

Proof of Theorem digexp
StepHypRef Expression
1 eluzelcn 11643 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2 eluz2nn 11670 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
32nnne0d 11010 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
41, 3jca 554 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
543ad2ant1 1080 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 nn0z 11345 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
7 nn0z 11345 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
86, 7anim12i 589 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
98ancomd 467 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
1093adant1 1077 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
11 expsub 12845 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
125, 10, 11syl2anc 692 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
1312eqcomd 2632 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) / (𝐵𝐾)) = (𝐵↑(𝑁𝐾)))
1413fveq2d 6154 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝐵𝑁) / (𝐵𝐾))) = (⌊‘(𝐵↑(𝑁𝐾))))
1514oveq1d 6620 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
1623ad2ant1 1080 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℕ)
17 simp2 1060 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℕ0)
18 eluzelre 11642 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
19 reexpcl 12814 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2018, 19sylan 488 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2118adantr 481 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
22 simpr 477 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 11671 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ0)
2423nn0ge0d 11299 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
2524adantr 481 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐵)
2621, 22, 25expge0d 12963 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐵𝑁))
2720, 26jca 554 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
28273adant2 1078 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
29 elrege0 12217 . . . 4 ((𝐵𝑁) ∈ (0[,)+∞) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
3028, 29sylibr 224 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ (0[,)+∞))
31 nn0digval 41660 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ (𝐵𝑁) ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
3216, 17, 30, 31syl3anc 1323 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
33 simpr 477 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝐾 = 𝑁)
3433eqcomd 2632 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝑁 = 𝐾)
35 nn0cn 11247 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
36353ad2ant3 1082 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
37 nn0cn 11247 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
38373ad2ant2 1081 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℂ)
3936, 38subeq0ad 10347 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4039adantr 481 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4134, 40mpbird 247 . . . . . . . . 9 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝑁𝐾) = 0)
4241oveq2d 6621 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = (𝐵↑0))
431exp0d 12939 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
44433ad2ant1 1080 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑0) = 1)
4544adantr 481 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑0) = 1)
4642, 45eqtrd 2660 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = 1)
4746fveq2d 6154 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = (⌊‘1))
48 1zzd 11353 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 ∈ ℤ)
49 flid 12546 . . . . . . 7 (1 ∈ ℤ → (⌊‘1) = 1)
5048, 49syl 17 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘1) = 1)
5147, 50eqtrd 2660 . . . . 5 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = 1)
5251oveq1d 6620 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (1 mod 𝐵))
53 eluz2gt1 11704 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
54 1mod 12639 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 mod 𝐵) = 1)
5518, 53, 54syl2anc 692 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (1 mod 𝐵) = 1)
56553ad2ant1 1080 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (1 mod 𝐵) = 1)
5756adantr 481 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (1 mod 𝐵) = 1)
5852, 57eqtr2d 2661 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
59 simprl1 1104 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ (ℤ‘2))
607adantl 482 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
616adantr 481 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℤ)
6260, 61zsubcld 11431 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
63623adant1 1077 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
6463ad2antrl 763 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℤ)
65 nn0re 11246 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
66653ad2ant3 1082 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
67 nn0re 11246 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
68673ad2ant2 1081 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℝ)
6966, 68sublt0d 10598 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) < 0 ↔ 𝑁 < 𝐾))
7069biimprd 238 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7170adantr 481 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7271impcom 446 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) < 0)
73 expnegico01 41570 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ (𝑁𝐾) ∈ ℤ ∧ (𝑁𝐾) < 0) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
7459, 64, 72, 73syl3anc 1323 . . . . . . . 8 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
75 ico01fl0 12557 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ (0[,)1) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7674, 75syl 17 . . . . . . 7 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7776oveq1d 6620 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (0 mod 𝐵))
782nnrpd 11814 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
79 0mod 12638 . . . . . . . . 9 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
8078, 79syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → (0 mod 𝐵) = 0)
81803ad2ant1 1080 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (0 mod 𝐵) = 0)
8281ad2antrl 763 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (0 mod 𝐵) = 0)
8377, 82eqtrd 2660 . . . . 5 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
84 eluzelz 11641 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
85843ad2ant1 1080 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
8685ad2antrl 763 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ ℤ)
8767, 65anim12i 589 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
88 lenlt 10061 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
8988bicomd 213 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁 < 𝐾𝐾𝑁))
9087, 89syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9190biimpd 219 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
92913adant1 1077 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9392adantr 481 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾𝑁))
9493impcom 446 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾𝑁)
95 3simpc 1058 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
9695ad2antrl 763 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
97 nn0sub 11288 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9896, 97syl 17 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9994, 98mpbid 222 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ0)
100 zexpcl 12812 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑁𝐾) ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
10186, 99, 100syl2anc 692 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
102 flid 12546 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ ℤ → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
103101, 102syl 17 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
104103oveq1d 6620 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = ((𝐵↑(𝑁𝐾)) mod 𝐵))
10513ad2ant1 1080 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
10633ad2ant1 1080 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
107105, 106, 63expm1d 12955 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) = ((𝐵↑(𝑁𝐾)) / 𝐵))
108107eqcomd 2632 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
109108ad2antrl 763 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
110 pm4.56 516 . . . . . . . . . . . . . 14 ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾))
111873adant1 1077 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
112 axlttri 10054 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
113111, 112syl 17 . . . . . . . . . . . . . . 15 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
114113biimprd 238 . . . . . . . . . . . . . 14 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ (𝐾 = 𝑁𝑁 < 𝐾) → 𝐾 < 𝑁))
115110, 114syl5bi 232 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) → 𝐾 < 𝑁))
116115expdimp 453 . . . . . . . . . . . 12 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾 < 𝑁))
117116impcom 446 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾 < 𝑁)
11883adant1 1077 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
119118ad2antrl 763 . . . . . . . . . . . 12 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
120 znnsub 11368 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
121119, 120syl 17 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
122117, 121mpbid 222 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ)
123 nnm1nn0 11279 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ → ((𝑁𝐾) − 1) ∈ ℕ0)
124122, 123syl 17 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝑁𝐾) − 1) ∈ ℕ0)
125 zexpcl 12812 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ ((𝑁𝐾) − 1) ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
12686, 124, 125syl2anc 692 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
127109, 126eqeltrd 2704 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ)
128183ad2ant1 1080 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
129128, 106, 63reexpclzd 12971 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℝ)
130783ad2ant1 1080 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
131 mod0 12612 . . . . . . . . 9 (((𝐵↑(𝑁𝐾)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
132129, 130, 131syl2anc 692 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
133132ad2antrl 763 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
134127, 133mpbird 247 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) mod 𝐵) = 0)
135104, 134eqtrd 2660 . . . . 5 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
13683, 135pm2.61ian 830 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
137136eqcomd 2632 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → 0 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13858, 137ifeqda 4098 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → if(𝐾 = 𝑁, 1, 0) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13915, 32, 1383eqtr4d 2670 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  ifcif 4063   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882  +∞cpnf 10016   < clt 10019  cle 10020  cmin 10211   / cdiv 10629  cn 10965  2c2 11015  0cn0 11237  cz 11322  cuz 11631  +crp 11776  [,)cico 12116  cfl 12528   mod cmo 12605  cexp 12797  digitcdig 41655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-ico 12120  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-dig 41656
This theorem is referenced by:  dig1  41668
  Copyright terms: Public domain W3C validator