Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  digexp Structured version   Visualization version   GIF version

Theorem digexp 44674
Description: The 𝐾 th digit of a power to the base is either 1 or 0. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
digexp ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))

Proof of Theorem digexp
StepHypRef Expression
1 eluzelcn 12258 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2 eluz2nn 12287 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
32nnne0d 11690 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
41, 3jca 514 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
543ad2ant1 1129 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 nn0z 12008 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
7 nn0z 12008 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
86, 7anim12i 614 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
98ancomd 464 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
1093adant1 1126 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
11 expsub 13480 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
125, 10, 11syl2anc 586 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
1312eqcomd 2829 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) / (𝐵𝐾)) = (𝐵↑(𝑁𝐾)))
1413fveq2d 6676 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝐵𝑁) / (𝐵𝐾))) = (⌊‘(𝐵↑(𝑁𝐾))))
1514oveq1d 7173 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
1623ad2ant1 1129 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℕ)
17 simp2 1133 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℕ0)
18 eluzelre 12257 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
19 reexpcl 13449 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2018, 19sylan 582 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2118adantr 483 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
22 simpr 487 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 12290 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ0)
2423nn0ge0d 11961 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
2524adantr 483 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐵)
2621, 22, 25expge0d 13531 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐵𝑁))
2720, 26jca 514 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
28273adant2 1127 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
29 elrege0 12845 . . . 4 ((𝐵𝑁) ∈ (0[,)+∞) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
3028, 29sylibr 236 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ (0[,)+∞))
31 nn0digval 44667 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ (𝐵𝑁) ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
3216, 17, 30, 31syl3anc 1367 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
33 simpr 487 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝐾 = 𝑁)
3433eqcomd 2829 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝑁 = 𝐾)
35 nn0cn 11910 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
36353ad2ant3 1131 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
37 nn0cn 11910 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
38373ad2ant2 1130 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℂ)
3936, 38subeq0ad 11009 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4039adantr 483 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4134, 40mpbird 259 . . . . . . . . 9 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝑁𝐾) = 0)
4241oveq2d 7174 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = (𝐵↑0))
431exp0d 13507 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
44433ad2ant1 1129 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑0) = 1)
4544adantr 483 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑0) = 1)
4642, 45eqtrd 2858 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = 1)
4746fveq2d 6676 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = (⌊‘1))
48 1zzd 12016 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 ∈ ℤ)
49 flid 13181 . . . . . . 7 (1 ∈ ℤ → (⌊‘1) = 1)
5048, 49syl 17 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘1) = 1)
5147, 50eqtrd 2858 . . . . 5 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = 1)
5251oveq1d 7173 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (1 mod 𝐵))
53 eluz2gt1 12323 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
54 1mod 13274 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 mod 𝐵) = 1)
5518, 53, 54syl2anc 586 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (1 mod 𝐵) = 1)
56553ad2ant1 1129 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (1 mod 𝐵) = 1)
5756adantr 483 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (1 mod 𝐵) = 1)
5852, 57eqtr2d 2859 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
59 simprl1 1214 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ (ℤ‘2))
607adantl 484 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
616adantr 483 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℤ)
6260, 61zsubcld 12095 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
63623adant1 1126 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
6463ad2antrl 726 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℤ)
65 nn0re 11909 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
66653ad2ant3 1131 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
67 nn0re 11909 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
68673ad2ant2 1130 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℝ)
6966, 68sublt0d 11268 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) < 0 ↔ 𝑁 < 𝐾))
7069biimprd 250 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7170adantr 483 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7271impcom 410 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) < 0)
73 expnegico01 44580 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ (𝑁𝐾) ∈ ℤ ∧ (𝑁𝐾) < 0) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
7459, 64, 72, 73syl3anc 1367 . . . . . . . 8 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
75 ico01fl0 13192 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ (0[,)1) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7674, 75syl 17 . . . . . . 7 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7776oveq1d 7173 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (0 mod 𝐵))
782nnrpd 12432 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
79 0mod 13273 . . . . . . . . 9 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
8078, 79syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → (0 mod 𝐵) = 0)
81803ad2ant1 1129 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (0 mod 𝐵) = 0)
8281ad2antrl 726 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (0 mod 𝐵) = 0)
8377, 82eqtrd 2858 . . . . 5 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
84 eluzelz 12256 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
85843ad2ant1 1129 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
8685ad2antrl 726 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ ℤ)
8767, 65anim12i 614 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
88 lenlt 10721 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
8988bicomd 225 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁 < 𝐾𝐾𝑁))
9087, 89syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9190biimpd 231 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
92913adant1 1126 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9392adantr 483 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾𝑁))
9493impcom 410 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾𝑁)
95 3simpc 1146 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
9695ad2antrl 726 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
97 nn0sub 11950 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9896, 97syl 17 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9994, 98mpbid 234 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ0)
100 zexpcl 13447 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑁𝐾) ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
10186, 99, 100syl2anc 586 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
102 flid 13181 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ ℤ → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
103101, 102syl 17 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
104103oveq1d 7173 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = ((𝐵↑(𝑁𝐾)) mod 𝐵))
10513ad2ant1 1129 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
10633ad2ant1 1129 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
107105, 106, 63expm1d 13523 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) = ((𝐵↑(𝑁𝐾)) / 𝐵))
108107eqcomd 2829 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
109108ad2antrl 726 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
110 pm4.56 985 . . . . . . . . . . . . . 14 ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾))
111873adant1 1126 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
112 axlttri 10714 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
113111, 112syl 17 . . . . . . . . . . . . . . 15 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
114113biimprd 250 . . . . . . . . . . . . . 14 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ (𝐾 = 𝑁𝑁 < 𝐾) → 𝐾 < 𝑁))
115110, 114syl5bi 244 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) → 𝐾 < 𝑁))
116115expdimp 455 . . . . . . . . . . . 12 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾 < 𝑁))
117116impcom 410 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾 < 𝑁)
11883adant1 1126 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
119118ad2antrl 726 . . . . . . . . . . . 12 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
120 znnsub 12031 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
121119, 120syl 17 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
122117, 121mpbid 234 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ)
123 nnm1nn0 11941 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ → ((𝑁𝐾) − 1) ∈ ℕ0)
124122, 123syl 17 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝑁𝐾) − 1) ∈ ℕ0)
125 zexpcl 13447 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ ((𝑁𝐾) − 1) ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
12686, 124, 125syl2anc 586 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
127109, 126eqeltrd 2915 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ)
128183ad2ant1 1129 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
129128, 106, 63reexpclzd 13613 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℝ)
130783ad2ant1 1129 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
131 mod0 13247 . . . . . . . . 9 (((𝐵↑(𝑁𝐾)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
132129, 130, 131syl2anc 586 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
133132ad2antrl 726 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
134127, 133mpbird 259 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) mod 𝐵) = 0)
135104, 134eqtrd 2858 . . . . 5 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
13683, 135pm2.61ian 810 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
137136eqcomd 2829 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → 0 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13858, 137ifeqda 4504 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → if(𝐾 = 𝑁, 1, 0) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13915, 32, 1383eqtr4d 2868 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  ifcif 4469   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  +∞cpnf 10674   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392  [,)cico 12743  cfl 13163   mod cmo 13240  cexp 13432  digitcdig 44662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-dig 44663
This theorem is referenced by:  dig1  44675
  Copyright terms: Public domain W3C validator