Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ehalf Structured version   Visualization version   GIF version

Theorem dignn0ehalf 44605
Description: The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
dignn0ehalf (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))

Proof of Theorem dignn0ehalf
StepHypRef Expression
1 nn0cn 11895 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
213ad2ant2 1126 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ ℂ)
3 2cnne0 11835 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
43a1i 11 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 ∈ ℂ ∧ 2 ≠ 0))
5 2nn0 11902 . . . . . . . . . . 11 2 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → 2 ∈ ℕ0)
7 id 22 . . . . . . . . . 10 (𝐼 ∈ ℕ0𝐼 ∈ ℕ0)
86, 7nn0expcld 13595 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℕ0)
98nn0cnd 11945 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℂ)
10 2cnd 11703 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℂ)
11 2ne0 11729 . . . . . . . . . 10 2 ≠ 0
1211a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ≠ 0)
13 nn0z 11993 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
1410, 12, 13expne0d 13504 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ≠ 0)
159, 14jca 512 . . . . . . 7 (𝐼 ∈ ℕ0 → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
16153ad2ant3 1127 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
17 divdiv1 11339 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0)) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
182, 4, 16, 17syl3anc 1363 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
1910, 9mulcomd 10650 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
20193ad2ant3 1127 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
21 2cnd 11703 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℂ)
22 simp3 1130 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
2321, 22expp1d 13499 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) = ((2↑𝐼) · 2))
2420, 23eqtr4d 2856 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = (2↑(𝐼 + 1)))
2524oveq2d 7161 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2 · (2↑𝐼))) = (𝐴 / (2↑(𝐼 + 1))))
2618, 25eqtr2d 2854 . . . 4 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2↑(𝐼 + 1))) = ((𝐴 / 2) / (2↑𝐼)))
2726fveq2d 6667 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝐼))))
2827oveq1d 7160 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
29 2nn 11698 . . . 4 2 ∈ ℕ
3029a1i 11 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℕ)
31 peano2nn0 11925 . . . 4 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
32313ad2ant3 1127 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
33 nn0rp0 12831 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
34333ad2ant2 1126 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
35 nn0digval 44588 . . 3 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3630, 32, 34, 35syl3anc 1363 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
37 nn0rp0 12831 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ (0[,)+∞))
38373ad2ant1 1125 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / 2) ∈ (0[,)+∞))
39 nn0digval 44588 . . 3 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (𝐴 / 2) ∈ (0[,)+∞)) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4030, 22, 38, 39syl3anc 1363 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4128, 36, 403eqtr4d 2863 1 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  [,)cico 12728  cfl 13148   mod cmo 13225  cexp 13417  digitcdig 44583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-ico 12732  df-seq 13358  df-exp 13418  df-dig 44584
This theorem is referenced by:  dignn0flhalf  44606  nn0sumshdiglemA  44607
  Copyright terms: Public domain W3C validator